Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338504

RESUMEN

Lactiplantibacillus plantarum OV50 is a novel strain that was isolated from Algerian olives. Prior to its use as a natural biopreservative, OV50 underwent characterization for various functions. OV50 shows no proteolytic, lipolytic, or hemolytic activity. In addition, it is non-cytotoxic to eukaryotic cells and does not exhibit acquired antibiotic resistance. OV50 was tested with Pseudomonas aeruginosa ATCC 27835, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, and Vibrio cholerae ATCC 14035 in a sardine based-medium at 37 °C and 7 °C. At 37 °C, OV50 completely inhibited the growth of these foodborne pathogens for a maximum of 6 h. At 7 °C, it suppressed their growth for a maximum of 8 days, except for S. aureus ATCC 6538, whose growth was reduced from 4 to 2 log CFU/mL. Microbiological counts, total volatile basic nitrogen (TVB-N), and peroxide values (PV) concentrations were determined in fresh sardines inoculated with OV50 and kept at 7 °C for 12 days. The inoculated sardines showed a significant reduction in TVB-N levels at D8 (34.9 mg/100 g) compared to the control (59.73 mg/100 g) and in PV concentrations at D4 (6.67 meq/kg) compared to the control (11.44 meq/kg), as well as a significant reduction in the numbers of Enterobacterales, Coliforms, Pseudomonas spp., Vibrio spp., and S. aureus At D8 and D12 compared to the control. Taken together, these results indicate that OV50 can improve the microbiological safety, freshness, and quality of sardines.

2.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253975

RESUMEN

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Granjas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Inflamación
3.
Antibiotics (Basel) ; 12(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508284

RESUMEN

Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin (LLB) produced by Enterococcus faecalis 14, a human strain isolated from meconium. Studies performed on EntDD14 enabled it to show its activity against Gram-positive bacteria such as Listeria monocytogenes, Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus. EntDD14 was also shown to potentiate the activity of different antibiotics such as erythromycin, kanamycin, and methicillin when assessed against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo in the NMRI-F holoxenic mouse model. Additionally, EntDD14 has an antiviral activity and decreased the secretion of pro-inflammatory IL-6 and IL-8 in inflamed human intestinal Caco-2 cells. The genome of E. faecalis 14 was sequenced and annotated. Molecular tools such as Bagel4 software enabled us to locate a 6.7kb-EntDD14 cluster. Transport of EntDD14 outside of the cytoplasm was shown to be performed synergistically by a channel composed of two pleckstrin-homology-domain-containing proteins, namely DdE/DdF and the ABC transporter DdGHIJ. This latter could also protect the bacteriocinogenic strain against extracellular EntDD14. Here, we focus on academic data and potential therapeutic issues of EntDD14, as a model of two-peptide LLB.

4.
Pharmaceuticals (Basel) ; 15(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35745601

RESUMEN

Bacterial resistance to antibiotics has become a major public health problem worldwide, with the yearly number of deaths exceeding 700,000. To face this well-acknowledged threat, new molecules and therapeutic methods are considered. In this context, the application of nanotechnology to fight bacterial infection represents a viable approach and has experienced tremendous developments in the last decades. Escherichia coli (E. coli) is responsible for severe diarrhea, notably in the breeding sector, and especially in pig farming. The resulting infection (named colibacillosis) occurs in young piglets and could lead to important economic losses. Here, we report the design of several new formulations based on colistin loaded on alginate nanoparticles (Alg NPs) in the absence, but also in the presence, of small molecules, such as components of essential oils, polyamines, and lactic acid. These new formulations, which are made by concomitantly binding colistin and small molecules to Alg NPs, were successfully tested against E. coli 184, a strain resistant to colistin. When colistin was associated with Alg NPs, the minimal inhibition concentration (MIC) decreased from 8 to 1 µg/mL. It is notable that when menthol or lactic acid was co-loaded with colistin on Alg NPs, the MIC of colistin drastically decreased, reaching 0.31 or 0.62 µg/mL, respectively. These novel bactericidal formulations, whose innocuity towards eukaryotic HT-29 cells was established in vitro, are presumed to permeabilize the bacterial membrane and provoke the leakage of intracellular proteins. Our findings revealed the potentiating effect of the Alg NPs on colistin, but also of the small molecules mentioned above. Such ecological and economical formulations are easy to produce and could be proposed, after confirmation by in vivo and toxicology tests, as therapeutic strategies to replace fading antibiotics.

5.
Antibiotics (Basel) ; 11(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740193

RESUMEN

Dermaseptin B2 (DRS-B2) is an antimicrobial peptide secreted by Phyllomedusa bicolor, which is an Amazonian tree frog. Here, we show that the adsorption of DRS-B2 on alginate nanoparticles (Alg NPs) results in a formulation (Alg NPs + DRS-B2) with a remarkable antibacterial activity against Escherichia coli ATCC 8739 and E. coli 184 strains, which are sensitive and resistant, respectively, to colistin. The antibacterial activity, obtained with this new formulation, is higher than that obtained with DRS-B2 alone. Of note, the addition of lactic acid or menthol to this new formulation augments its antibacterial activity against the aforementioned Gram-negative bacilli. The safety of DRS-B2, and also that of the new formulation supplemented or not with a small molecule such as lactic acid or menthol has been proven on the human erythrocytes and the eukaryotic cell line types HT29 (human) and IPEC-1 (animal). Similarly, their stability was determined under the conditions mimicking the gastrointestinal tract with different conditions: pH, temperature, and the presence of digestive enzymes. Based on all the obtained data, we assume that these new formulations are promising and could be suggested, after in vivo approval and completing regulation aspects, as alternatives to antibiotics to fight infections caused by Gram-negative bacilli such as E. coli.

6.
Probiotics Antimicrob Proteins ; 14(4): 613-619, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35604525

RESUMEN

In this study, we investigate the interactions between the leaderless class IIb bacteriocin, enterocin DD14 (EntDD14), or the methicillin or the combination of these antibacterials, and two methicillin-resistant Staphylococcus aureus strains (MRSA-S1 and USA 300) which are respectively a clinical strain and a reference strain. The results obtained showed that EntDD14 alone or in combination with the antibiotic could significantly prevent the adhesion of these pathogenic bacteria to human cells. On the other hand, we investigated the anti-inflammatory effect of EntDD14 on the secretion of pro-inflammatory interleukins, including IL-6 and IL-8. The results show that EntDD14 is able to decrease significantly the secretion of both interleukins on Caco-2 cells following their treatments with lipopolysaccharides. These novel data provide insightful informations to support applications of bacteriocins as therapeutic agents capable as well to defeat pathogenic bacteria and concomitantly limit their inflammatory reactions.


Asunto(s)
Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Bacterias , Bacteriocinas/farmacología , Hidrocarburos Aromáticos con Puentes , Células CACO-2 , Humanos
7.
Vet Microbiol ; 266: 109359, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35121303

RESUMEN

Colistin is frequently used for the control of post-weaning diarrhoea in pigs. Colistin resistance caused by plasmidic genes is a public health issue. We evaluated, in experimental animal facilities, whether free colistin or colistin-loaded on alginate nanoparticles (colistin/Alg NPs) could select a colistin-resistant Enterotoxigenic Escherichia coli. The Alg NPs were produced by a simple top-down approach through ball milling of sodium alginate polymer precursor, and colistin loading was achieved through physical adsorption. Colistin loading on Alg NPs was confirmed using various tools such Fourier transform infrared spectroscopy and dynamic light scattering measurements. Thirty-four piglets were orally inoculated or not with a mcr-1-positive, rifampicin-resistant enterotoxigenic E. coli strain, and the inoculated pigs were either treated or not during five days with commercial colistin (100,000 IU/kg) or colistin/Alg NPs (40,415 IU/kg). Clinical signs were recorded. Fecal and post-mortem samples were analyzed by culture. The result clearly indicated that colistin/Alg NPs had a slightly better therapeutic effect. Both treatments led to a transitory decrease of the total E. coli fecal population with a majority of colistin-resistant E. coli isolates during treatment, but the dominant E. coli population was found susceptible at the end of the trial. Further studies are needed to evaluate, in diverse experimental or field conditions, the therapeutic efficacy of colistin/Alg NPs for post-weaning diarrhoea.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Nanopartículas , Alginatos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Porcinos
8.
Microorganisms ; 10(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056601

RESUMEN

The present study aimed to show the benefits of novel lactic acid bacteria (LAB) strains isolated from the caeca of healthy chickens. These novel strains, identified as Limosilactobacillus reuteri and Ligilactobacillus salivarius, displayed high levels of lactic acid production, capability of biofilm formation, high aggregation and adhesion scores, and significant survival rates under conditions mimicking the chicken gastrointestinal tract (GIT). In addition, these novel Lactobacillaceae isolates were neither hemolytic nor cytotoxic. In vivo trials were able to establish their ability to reduce necrotic enteritis. Notably, a significant weight gain was registered, on day 10 of treatment, in the group of chickens fed with a mixture of L. reuteri ICVB416 and L. salivarius ICVB430 strains, as compared with the control group. This group has also shown a reduced number of lesions in the gut compared with other infected chicken groups. This study provides in vitro and in vivo evidence supporting the benefits of these novel Lactobacillaceae isolates for their use in poultry livestock as protective cultures to control the bacterial necrotic enteritis (NE) Clostridium perfringens.

9.
Microbiol Res ; 252: 126864, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34521050

RESUMEN

Biofilm formation by pathogenic bacteria as well as their resilience to antibiotic treatments are a major health problem. Here, we sequenced and analyzed the genome of the clinical methicillin-resistant Staphylococcus aureus S1 (MRSA-S1) strain and established its sensitivity to the combination of methicillin and the leaderless two peptides enterocin DD14 (EntDD14). Such sensitivity was assessed in vitro based on the MIC/FIC values as well as on killing curves experiments. Moreover, combination of EntDD14 and methicillin was able to reduce the biofilm formation of Staphylococcus aureus S1 of about ∼30 %. Interestingly, genes thought to be involved in the virulence of MRSA-S1, like nuc and pvl which code, respectively, for nuclease and Panton-Valentine leucocidin, were shown to be downregulated following treatment with EntDD14 and methicillin. Similar effects were registered for other genes such as cflA, cflB and icaB, coding for bacterial ligands clumping factors A, B and intercellular adhesion factor respectively. All these data, suggest that combinations of bacteriocins and antibiotics are useful as a backup for treatment of bacterial infections.


Asunto(s)
Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente a Meticilina , Meticilina , Hidrocarburos Aromáticos con Puentes/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
10.
Probiotics Antimicrob Proteins ; 13(4): 1213-1227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33481224

RESUMEN

Here, we report a novel approach to improve the anti-Clostridium perfringens activity of the leaderless two-peptide enterocin 14 (EntDD14), produced by Enterococcus faecalis 14. This strategy consists of loading EntDD14 onto alginate nanoparticles (Alg NPs), which are made of a safe polymer. The resulting formulation (EntDD14/Alg NPs) was able to reduce up to four times the minimum inhibitory concentration (MIC) of EntDD14 against C. perfringens pathogenic strains isolated from a chicken affected by necrotic enteritis (NE). Interestingly, this formulation remained active under conditions mimicking the human and chicken gastric tract. Assays conducted to establish the impact of this formulation on the intestinal epithelial cell line Caco-2 and the human colorectal adenocarcinoma cell line HT29 revealed the absence of cytotoxicity of both free-EntDD14 and EntDD14 loaded onto the alginate nanoparticles (EntDD14/Alg NPs) against the aforementioned eukaryotic cells, after 24 h of contact. Notably, EntDD14 and EntDD14/Alg NPs, both at a sub-inhibitory concentration, affected the expression of genes coding for clostridial toxins such as toxin α, enteritis B-like toxin, collagen adhesion protein and thiol-activated cytolysin. Further, expression of these genes was significantly down-regulated following the addition of EntDD14/Alg NPs, but not affected upon addition of EntDD14 alone. This study revealed that adsorption of EntDD14 onto Alg NPs leads to a safe and active formulation (EntDD14/Alg NPs) capable of affecting the pathogenicity of C. perfringens. This formulation could therefore be used in the poultry industry as a novel approach to tackle NE.


Asunto(s)
Alginatos , Enteritis , Nanopartículas , Péptidos/farmacología , Animales , Hidrocarburos Aromáticos con Puentes/farmacología , Células CACO-2 , Pollos , Clostridium perfringens/genética , Células HT29 , Humanos , Factores de Virulencia/genética
11.
Probiotics Antimicrob Proteins ; 13(1): 218-228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32388703

RESUMEN

This study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits.


Asunto(s)
Animales de Zoológico/microbiología , Bacterias , Bacteriocinas , Biodiversidad , Heces/microbiología , Filogenia , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Francia
12.
Antibiotics (Basel) ; 11(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35052897

RESUMEN

Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.

13.
Probiotics Antimicrob Proteins ; 13(1): 208-217, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32712896

RESUMEN

Bacteriocin-producing Escherichia coli ICVB442, E. coli ICVB443, Enterococcus faecalis ICVB497, E. faecalis ICVB501, and Pediococcus pentosaceus ICVB491 strains were examined for their pathogenic risks and compatibility and hence suitability as consortium probiotic bacteria. Except for E. coli ICVB442, all were inclined to form biofilm. All were gelatinase-negative, sensitive to most of the antibiotics tested and not cytotoxic to porcine intestinal epithelial cells (IPEC-1) when tested at a multiplicity of infection (MOI) of 1. P. pentosaceus ICVB491 stood apart by inhibiting the other four strains. Both E. coli strains and E. faecalis ICVB497 strain were ß-hemolytic. Survival in the TIM-1 dynamic model of the human digestive system was 139% for the tested E. coli ICVB443 strain, 46% for P. pentosaceus ICVB491, and 32% for the preferred E. faecalis ICVB501 strain. These three potential probiotics, which are bacteriocin-producing strains, will be considered for simultaneous use as consortium with synergistic interactions in vivo on animal model.


Asunto(s)
Alimentación Animal/parasitología , Bacteriocinas/biosíntesis , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/fisiología , Escherichia coli/fisiología , Intestinos/microbiología , Ganado , Consorcios Microbianos , Pediococcus pentosaceus/fisiología , Probióticos , Animales , Línea Celular , Humanos , Porcinos
14.
Arch Microbiol ; 203(1): 205-217, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32803347

RESUMEN

Here, we have analysed and explored the genome sequences of three newly isolated bacteria that were recently characterised for their probiotic activities and ability to produce bacteriocins. These strains, isolated from faeces of animals living in captivity at the zoological garden of Lille (France), are Escherichia coli ICVB443, Enterococcus faecalis ICVB501 and Pediococcus pentosaceus ICVB491. Their genomes have been analysed and compared to those of their pathogenic or probiotic counterparts. The genome analyses of E. coli ICVB443 and Ent. faecalis ICVB501 displayed similarities to those of probiotics E. coli 1917 Nissle, and Ent. faecalis Symbioflor 1, respectively. Furthermore, E. coli ICVB443 shares at least 89 genes with the enteroaggregative E. coli 55989 (EAEC), and Ent. faecalis ICVB501 shares at least 315 genes with the pathogenic Ent. faecalis V583 strain. Unlike Ped. pentosaceus ICVB491, which is devoid of virulence genes, E. coli ICVB443 and Ent. faecalis ICVB501 both carry genes encoding virulence factors on their genomes. Of note, the bioinformatics analysis of these two genomes located the bsh gene, which codes for bile salt hydrolase (BSH). The presence of BSH is of major importance, as it can help to increase the viability of these two strains in the gastrointestinal tract (GIT). The genome analysis of Ped. pentosaceus ICVB491 confirmed its GRAS status (Generally Recognised As Safe), as no genomic virulence factor determinant was found.


Asunto(s)
Bacterias/genética , Bacteriocinas/genética , Heces/microbiología , Genoma Bacteriano/genética , Animales , Bacterias/patogenicidad , Simulación por Computador , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidad , Escherichia coli/genética , Escherichia coli/patogenicidad , Tracto Gastrointestinal/microbiología , Pediococcus pentosaceus/genética , Pediococcus pentosaceus/patogenicidad , Probióticos , Factores de Virulencia/genética
15.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212803

RESUMEN

Lacticaseibacillus paracasei CNCM I-5369, formerly Lactobacillus paracasei CNCM I-5369, produces bacteriocins that are remarkably active against Gram-negative bacteria, among which is the Escherichia coli-carrying mcr-1 gene that is involved in resistance to colistin. These bacteriocins present in the culture supernatant of the producing strain were extracted and semi-purified. The fraction containing these active bacteriocins was designated as E20. Further, E20 was loaded onto alginate nanoparticles (Alg NPs), leading to a highly active nano-antibiotics formulation named hereafter Alg NPs/E20. The amount of E20 adsorbed on the alginate nanoparticles was 12 wt.%, according to high-performance liquid chromatography (HPLC) analysis. The minimal inhibitory concentration (MIC) values obtained with E20 ranged from 250 to 2000 µg/mL, whilst those recorded for Alg NPs/E20 were comprised between 2 and 4 µg/mL, which allowed them to gain up to 500-fold in the anti-E. coli activity. The damages caused by E20 and/or Alg NPs/E20 on the cytology of the target bacteria were characterized by transmission electron microscopy (TEM) imaging and the quantification of intracellular proteins released following treatment of the target bacteria with these antimicrobials. Thus, loading these bacteriocins on Alg NPs appeared to improve their activity, and the resulting nano-antibiotics stand as a promising drug delivery system.


Asunto(s)
Alginatos , Antibacterianos , Bacteriocinas , Escherichia coli/crecimiento & desarrollo , Lactobacillaceae/química , Nanopartículas/química , Alginatos/química , Alginatos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología
16.
Artículo en Inglés | MEDLINE | ID: mdl-33114656

RESUMEN

Bacteriocins are antimicrobial peptides some of which are endowed with antiviral, anticancer and antibiofilm properties. These properties could be improved through synergistic interactions of these bacteriocins with other bioactive molecules such as antibiotics, phages, nanoparticles and essential oils. A number of studies are steadily reporting the effects of these combinations as new and potential therapeutic strategies in the future, as they may offer many incentives over existing therapies. In particular, bacteriocins can benefit from combination with nanoparticles which can improve their stability and solubility, and protect them from enzymatic degradation, reduce their interactions with other molecules and improve their bioavailability. Furthermore, the combination of bacteriocins with other antimicrobials is foreseen as a way to reduce the development of antibiotic resistance due to the involvement of several modes of action. Another relevant advantage of these synergistic combinations is that it decreases the concentration of each antimicrobial component, thereby reducing their side effects such as their toxicity. In addition, combination can extend the utility of bacteriocins as antiviral or anticancer agents. Thus, in this review, we report and discuss the synergistic effects of bacteriocin combinations as medicines, and also for other diverse applications including, antiviral, antispoilage, anticancer and antibiofilms.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacteriocinas/farmacología
17.
Foods ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722025

RESUMEN

Nine strains of Lactiplantibacillus plantarum and one strain of Lacticaseibacillus paracasei that were recently isolated from prickly pears, fresh figs and blackberries, which are traditionally and largely consumed fruits in Kabylia (north of Algeria), were studied here for their antagonism and antioxidant properties as well as for production of exopolysaccharides. With respect to their inhibitory properties, these strains were tested against three food representative pathogens including Escherichia coli ATCC 8739, Staphylococcus aureus 2S6 and Listeria monocytogenes 162. The antagonism of these pathogens was attributable to lactic acid production, present in the cell free supernatant, at concentrations ranging from 9 to 16.74 g/L. The anti-adhesive properties observed on polystyrene or eukaryotic Caco-2 cells were exerted in a strain dependent-manner. Indeed, the scores obtained ranged from 27% to 75% for S. aureus 2S6, 54% to 95% for L. monocytogenes 162, and 50% to 97% for E. coli ATCC 8739. The co-aggregation of these Lactobacillus strains with the aforementioned target bacteria appeared to be exerted in a strain-dependent manner, with noticeably the upmost rate for Lb. paracasei FB1 on S. aureus 2S6. Interestingly, these novel Lactobacillus strains were able to produce a large amount (315.55 to 483.22 mg/L) of exopolysaccharides, and showed a significant scavenging activity on the 2,2-di-phényl-2-picrylhydrazyle (DPPH) synthetic free radical with rates of 51% to 56%. Of note, the highest antioxidant activity was observed for Lb. paracasei FB1 using the culture supernatants, intact cells or the intracellular extract. The statistical analysis of these data using the principal component analysis (ACP) enabled us to establish three distinct clusters with potential applications as bioprotective and/or probiotic agents, following further evaluation.

18.
Front Microbiol ; 11: 1198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636812

RESUMEN

Lactobacillus paracasei CNCM I-5369 isolated from a traditional Algerian dairy product produces extracellular inhibitory substances, namely, bacteriocins, which are active against a panel of pathogenic Escherichia coli strains. This activity was observed only at a narrow pH 4.5-5, and resulted to be heat stable and sensitive to the action of proteolytic enzymes, which indicate a proteinaceous nature. This new strain has a genome of 2,752,975 bp, with a 46.6% G + C ratio and contains at least 2664 coding sequences. The Bagel software analysis identified five open reading frames (ORFs) that are translated to new class II bacteriocin. Each ORF was cloned in frame with a His-tag tail and expressed in E. coli BL21 (DE3) (pLysS) strain. Of note, each fusion protein carrying any of these ORFs at the C- or N-terminal position resulted to be active against E. coli 184 strain used as target organism. This manuscript reports the first multi-bacteriocinogenic strain producing five new class II bacteriocins with activity against Gram-negative bacilli (GNB), namely, E. coli. Heterologous expression and activity of each new class II bacteriocin were demonstrated.

19.
Anaerobe ; 62: 102177, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32097777

RESUMEN

Eleven strains of clostridia were isolated from chickens suffering from necrotic enteritis (NE) disease, and were identified by 16S rDNA sequencing as C. perfringens (Clin1, ICVB079, ICVB080, ICVB081, ICVB082, ICVB083, ICVB085, ICVB088, ICVB089, ICVB090), C. sporogenes (ICVB086) and C. cadaveris (ICVB087). These novel strains were then characterized for their pathoproperties including their sensitivity to different antibiotics, hemolytic activities and abilities to carry netB gene, which encodes the necrotic enteritis B-Like toxin (NetB); a key virulence factor involved in the NE. Whilst, no antibiotic resistance was detected for all these strains, C. perfringens ICVB081 and C. perfringens Clin1 have ß-hemolytic activities and carry DNA coding for the netB gene. Remarkably, cross-resistant assays performed between these Clostridium strains underpinned the capability of C. perfringens ICVB082 to inhibit the pathogenic C. perfringens DSM756, used as reference strain. This inhibition was exerted through production of an extracellular compound, which was sensitive to heat treatment, lipase and active at pH values ranging from 4 to 7. This report deals with the isolation of novel Clostridium strains from chicken origin and underlines the safety and inhibitory capability of C. perfringens ICVB082 through an extracellular metabolite.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Clostridium/veterinaria , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/genética , Farmacorresistencia Bacteriana , Genoma Bacteriano , Animales , Antibiosis , Toxinas Bacterianas/genética , Clostridium perfringens/patogenicidad , Farmacorresistencia Bacteriana Múltiple , Hemólisis , Filogenia , Enfermedades de las Aves de Corral/microbiología , ARN Ribosómico 16S , Virulencia , Factores de Virulencia
20.
Probiotics Antimicrob Proteins ; 12(4): 1514-1523, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31981113

RESUMEN

This first study performed on traditional fruits consumed in North Africa reveals their richness in microorganisms with beneficial attributes like cholesterol lowering capabilities. Blackberries (Rubus sp.), fresh figs (Ficus carica), and prickly pears (Opuntia ficus-indica) are fruits largely and traditionally consumed in Kabylia, a beautiful northern Algerian region. Here, 85 lactic acid bacteria (LAB)-isolates were isolated and identified by MALDI-TOF mass spectrometry. The identified species belong to Lactobacillus and Leuconostoc genera. These 85 LAB-isolates were then assessed for their capabilities to grow under conditions mimicking the gastrointestinal tract, and the resulting data were statistically treated with principal component analysis (PCA). After which, only 26 LAB-isolates were selected and characterized for their genetic relatedness using random amplified polymorphic DNA (RAPD) method. Following the genetic relatedness assessment, only 10 LAB-strains, among which nine Lactobacillus plantarum and one Lactobacillus paracasei were studied for their pathoproperties and some probiotic features. Interestingly, all of these 10 LAB-strains were devoid of adverse effects, but capable to adhere to human epithelial colorectal adenocarcinoma Caco-2 cells. Of note, these 10 LAB-strains exhibited an important in vitro hypocholesteromia effect, in strain-dependent manner. Moreover, the Lactobacillus strains exhibited a high bile salt hydrolase (BSH) activity which was correlated with expression of bsh2, bsh3 and bsh4 genes.


Asunto(s)
Ficus/microbiología , Frutas/microbiología , Lacticaseibacillus paracasei/química , Lactobacillus plantarum/química , Opuntia/microbiología , Probióticos/farmacología , Rubus/microbiología , Argelia , Amidohidrolasas/genética , Amidohidrolasas/aislamiento & purificación , Amidohidrolasas/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Células CACO-2 , ADN Bacteriano/genética , Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Técnicas de Amplificación de Ácido Nucleico , Análisis de Componente Principal , Probióticos/aislamiento & purificación , Probióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA