Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmacol Res Perspect ; 12(1): e01159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149766

RESUMEN

Human organs-on-chips (organ chips) are small microfluidic devices that allow human cells to perform complex organ-level functions in vitro by recreating multi-cellular and multi-tissue structures and applying in vivo-like biomechanical cues. Human Organ Chips are being used for drug discovery and toxicology testing as an alternative to animal models which are ethically challenging and often do not predict clinical efficacy or toxicity. In this mini-review, we summarize our presentation that reviewed the state of the art relating to these microfluidic culture devices designed to mimic specific human organ structures and functions, and the application of Organ Chips to regenerative pharmacology.


Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas Microfisiológicos , Animales , Humanos , Modelos Animales , Descubrimiento de Drogas
2.
Bio Protoc ; 13(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36789090

RESUMEN

Traditional drug safety assessments often fail to predict complications in humans, especially when the drug targets the immune system. Rodent-based preclinical animal models are often ill-suited for predicting immunotherapy-mediated adverse events in humans, in part because of the fundamental differences in immunological responses between species and the human relevant expression profile of the target antigen, if it is expected to be present in normal, healthy tissue. While human-relevant cell-based models of tissues and organs promise to bridge this gap, conventional in vitro two-dimensional models fail to provide the complexity required to model the biological mechanisms of immunotherapeutic effects. Also, like animal models, they fail to recapitulate physiologically relevant levels and patterns of organ-specific proteins, crucial for capturing pharmacology and safety liabilities. Organ-on-Chip models aim to overcome these limitations by combining micro-engineering with cultured primary human cells to recreate the complex multifactorial microenvironment and functions of native tissues and organs. In this protocol, we show the unprecedented capability of two human Organs-on-Chip models to evaluate the safety profile of T cell-bispecific antibodies (TCBs) targeting tumor antigens. These novel tools broaden the research options available for a mechanistic understanding of engineered therapeutic antibodies and for assessing safety in tissues susceptible to adverse events. Graphical abstract Figure 1. Graphical representation of the major steps in target-dependent T cell-bispecific antibodies engagement and immunomodulation, as performed in the Colon Intestine-Chip.

3.
Mol Ther Nucleic Acids ; 29: 923-940, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36032397

RESUMEN

The current coronavirus disease 2019 (COVID-19) pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III). These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique sequence motif (sense strand, 5'-C; antisense strand, 3'-GGG) that mediates end-to-end dimer self-assembly. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory small interfering RNAs (siRNAs), their activity is independent of Toll-like receptor (TLR) 7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with immunostimulant poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad-spectrum inhibition of infections by many respiratory viruses with pandemic potential, including severe acute respiratory syndrome coronavirus (SARS-CoV)-2, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus (HCoV)-NL63, and influenza A virus in cell lines, human lung chips that mimic organ-level lung pathophysiology, and a mouse SARS-CoV-2 infection model. These short double-stranded RNAs (dsRNAs) can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics.

4.
Nat Commun ; 13(1): 1928, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396513

RESUMEN

Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.


Asunto(s)
Antígenos de Neoplasias , Inmunidad Innata , Gripe Humana , Proteínas Quinasas Activadas por Mitógenos , Canales Catiónicos TRPV , Antígenos de Neoplasias/metabolismo , Citocinas , Células Endoteliales , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/inmunología , Pulmón , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Canales Catiónicos TRPV/metabolismo
5.
J Cyst Fibros ; 21(4): 606-615, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34799298

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS: We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS: The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS: The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.


Asunto(s)
Fibrosis Quística , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Endoteliales , Humanos , Dispositivos Laboratorio en un Chip , Pulmón , Pseudomonas aeruginosa/fisiología
6.
bioRxiv ; 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34845453

RESUMEN

The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.

7.
Elife ; 102021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34378534

RESUMEN

Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.


Asunto(s)
Anticuerpos Biespecíficos/efectos adversos , Dispositivos Laboratorio en un Chip/estadística & datos numéricos , Linfocitos T/inmunología , Animales , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunoterapia/métodos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA