Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8352, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333110

RESUMEN

Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs, MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen-segregating mutations in both genes, we identify 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in other tissues. They are unusual in their tendency to lack introns but even more so in their TE-like methylation (teM) in coding DNA. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with the potential for extremely high expression in pollen but constitutive silencing elsewhere.


Asunto(s)
ADN Glicosilasas , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Polen , Zea mays , Zea mays/genética , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Polen/genética , Polen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Tubo Polínico/metabolismo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo
2.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38405940

RESUMEN

Although DNA methylation primarily represses TEs, it also represses select genes that are methylated in plant body tissues but demethylated by DNA glycosylases (DNGs) in endosperm or pollen. Activity of either one of two DNGs, MDR1 or DNG102, is essential for pollen viability in maize. Using single-pollen mRNA sequencing on pollen segregating mutations in both genes, we identified 58 candidate DNG target genes that account for 11.1% of the wild-type transcriptome but are silent or barely detectable in the plant body (sporophyte). They are unusual in their tendency to lack introns but even more so in their having TE-like methylation in their CDS. The majority have predicted functions in cell wall modification, and they likely support the rapid tip growth characteristic of pollen tubes. These results suggest a critical role for DNA methylation and demethylation in regulating maize genes with potential for extremely high expression in pollen but constitutive silencing elsewhere.

3.
Front Plant Sci ; 12: 707839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504508

RESUMEN

Numerous climate change threats will necessitate a shift toward more sustainable agricultural practices during the 21st century. Conversion of annual crops to perennials that are capable of regrowing over multiple yearly growth cycles could help to facilitate this transition. Perennials can capture greater amounts of carbon and access more water and soil nutrients compared to annuals. In principle it should be possible to identify genes that confer perenniality from wild relatives and transfer them into existing breeding lines to create novel perennial crops. Two major loci controlling perennial regrowth in the maize relative Zea diploperennis were previously mapped to chromosome 2 (reg1) and chromosome 7 (reg2). Here we extend this work by mapping perennial regrowth in segregating populations involving Z. diploperennis and the maize inbreds P39 and Hp301 using QTL-seq and traditional QTL mapping approaches. The results confirmed the existence of a major perennial regrowth QTL on chromosome 2 (reg1). Although we did not observe the reg2 QTL in these populations, we discovered a third QTL on chromosome 8 which we named regrowth3 (reg3). The reg3 locus exerts its strongest effect late in the regrowth cycle. Neither reg1 nor reg3 overlapped with tiller number QTL scored in the same population, suggesting specific roles in the perennial phenotype. Our data, along with prior work, indicate that perennial regrowth in maize is conferred by relatively few major QTL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...