Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 205(5): 189, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055657

RESUMEN

A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.


Asunto(s)
Methanobacterium , Yacimiento de Petróleo y Gas , Methanobacterium/genética , Costa Rica , ARN Ribosómico 16S/genética , Sulfatos/metabolismo , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Ácidos Grasos
2.
Arch Microbiol ; 204(9): 554, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962867

RESUMEN

A novel methanogenic strain, CaP3V-MF-L2AT, was isolated from an exploratory oil well from Cahuita National Park, Costa Rica. The cells were irregular cocci, 0.8-1.8 µm in diameter, stained Gram-negative and were motile. The strain utilized H2/CO2, formate and the primary and secondary alcohols 1-propanol and 2-propanol for methanogenesis, but not acetate, methanol, ethanol, 1-butanol or 2-butanol. Acetate was required as carbon source. The novel isolate grew at 25-40 °C, pH 6.0-7.5 and 0-2.5% (w/v) NaCl. 16S rRNA gene sequence analysis revealed that the strain is affiliated to the genus Methanofollis. It shows 98.8% sequence similarity to its closest relative Methanofollis ethanolicus. The G + C content is 60.1 mol%. Based on the data presented here type strain CaP3V-MF-L2AT (= DSM 113321T = JCM 39176T) represents a novel species, Methanofollis propanolicus sp. nov.


Asunto(s)
Archaea , Methanomicrobiaceae , 1-Propanol , Archaea/genética , Costa Rica , ADN de Archaea/genética , Metano , Methanomicrobiaceae/genética , Yacimiento de Petróleo y Gas , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Nat Commun ; 13(1): 710, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132062

RESUMEN

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament's flexibility.


Asunto(s)
Flagelos/química , Methanocaldococcus/química , Proteínas Arqueales/química , Sitios de Unión , Microscopía por Crioelectrón , Flagelos/fisiología , Flagelina/química , Glicosilación , Metales/química , Methanocaldococcus/fisiología , Modelos Moleculares , Multimerización de Proteína , Subunidades de Proteína
4.
Bioresour Technol ; 345: 126524, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896529

RESUMEN

The hydrogen gas-to-liquid mass transfer is the limiting factor in biological methanation. In trickle-bed reactors, mass transfer can be increased by high flow velocities in the liquid phase, by adding a packing material with high liquid hold-up or by using methanogenic archaea with a high methane productivity. This study developed a polyphasic approach to address all methods at once. Various methanogenic strains and packings were investigated from a microbial and hydrodynamic perspective. Analyzing the ability to produce high-quality methane and to form biofilms, pure cultures of Methanothermobacter performed better than those of the genus Methanothermococcus. Liquid and static hold-up of a packing material and its capability to facilitate attachment was not attributable to a single property. Consequently, it is recommended to carefully match organism and packing for optimized performance of trickle-bed reactors. The ideal combination for the ORBIT-system was identified as Methanothermobacter thermoautotrophicus IM5 and DuraTop®.


Asunto(s)
Reactores Biológicos , Euryarchaeota , Hidrógeno , Metano , Methanobacteriaceae
5.
Bioresour Technol ; 333: 125135, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33892429

RESUMEN

In this study, a fully automated process converting hydrogen and carbon dioxide to methane in a high temperature trickle-bed reactor was developed from lab scale to field test level. The reactor design and system performance was optimized to yield high methane content in the product gas for direct feed-in to the gas grid. The reaction was catalyzed by a pure culture of Methanothermobacter thermoautotrophicus IM5, which formed a biofilm on ceramic packing elements. During 600 h in continuous and semi-continuous operation in countercurrent flow, the 0.05 m3 reactor produced up to95.3 % of methane at a methane production rate of 0.35 [Formula: see text] . Adding nitrogen as carrier gas during startup, foam control and dosing of ammonium and sodium sulfide as nitrogen and sulfur source were important factors for process automation.


Asunto(s)
Dióxido de Carbono , Euryarchaeota , Reactores Biológicos , Hidrógeno , Metano
6.
Elife ; 62017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28653905

RESUMEN

The archaellum is the macromolecular machinery that Archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.


Asunto(s)
Sustancias Macromoleculares/ultraestructura , Orgánulos/ultraestructura , Pyrococcus furiosus/ultraestructura , Microscopía por Crioelectrón
7.
Front Microbiol ; 6: 543, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106369

RESUMEN

The uncultivated "Candidatus Altiarchaeum hamiconexum" (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks ("hami") on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44-47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins.

8.
Appl Environ Microbiol ; 80(15): 4764-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24858087

RESUMEN

To date, the behavior of hyperthermophilic microorganisms in their biotope has been studied only to a limited degree; this is especially true for motility. One reason for this lack of knowledge is the requirement for high-temperature microscopy-combined, in most cases, with the need for observations under strictly anaerobic conditions-for such studies. We have developed a custom-made, low-budget device that, for the first time, allows analyses in temperature gradients up to 40°C over a distance of just 2 cm (a biotope-relevant distance) with heating rates up to ∼5°C/s. Our temperature gradient-forming device can convert any upright light microscope into one that works at temperatures as high as 110°C. Data obtained by use of this apparatus show how very well hyperthermophiles are adapted to their biotope: they can react within seconds to elevated temperatures by starting motility-even after 9 months of storage in the cold. Using the temperature gradient-forming device, we determined the temperature ranges for swimming, and the swimming speeds, of 15 selected species of the genus Thermococcus within a few months, related these findings to the presence of cell surface appendages, and obtained the first evidence for thermotaxis in Archaea.


Asunto(s)
Microscopía/métodos , Thermococcus/citología , Diseño de Equipo , Calor , Microscopía/instrumentación , Thermococcus/química , Thermococcus/clasificación
9.
Front Microbiol ; 5: 695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25566211

RESUMEN

We have described previously that the flagella of the Euryarchaeon Pyrococcus furiosus are multifunctional cell appendages used for swimming, adhesion to surfaces and formation of cell-cell connections. Here, we characterize these organelles with respect to their biochemistry and transcription. Flagella were purified by shearing from cells followed by CsCl-gradient centrifugation and were found to consist mainly of a ca. 30 kDa glycoprotein. Polymerization studies of denatured flagella resulted in an ATP-independent formation of flagella-like filaments. The N-terminal sequence of the main flagellin was determined by Edman degradation, but none of the genes in the complete genome code for a protein with that N-terminus. Therefore, we resequenced the respective region of the genome, thereby discovering that the published genome sequence is not correct. A total of 771 bp are missing in the data base, resulting in the correction of the previously unusual N-terminal sequence of flagellin FlaB1 and in the identification of a third flagellin. To keep in line with the earlier nomenclature we call this flaB0. Very interestingly, the previously not identified flaB0 codes for the major flagellin. Transcriptional analyses of the revised flagellar operon identified various different cotranscripts encoding only a single protein in case of FlaB0 and FlaJ or up to five proteins (FlaB0-FlaD). Analysing the RNA of cells from different growth phases, we found that the length and number of detected cotranscript increased over time suggesting that the flagellar operon is transcribed mostly in late exponential and stationary growth phase.

10.
Appl Environ Microbiol ; 77(5): 1556-62, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21169435

RESUMEN

The surfaces of 8 bacterial and 23 archaeal species, including many hyperthermophilic Archaea, could be stained using succinimidyl esters of fluorescent dyes. This allowed us for the first time to analyze the mode of cell wall growth in Archaea by subculturing stained cells. The data obtained show that incorporation of new cell wall material in Archaea follows the pattern observed for Bacteria: in the coccoid species Pyrococcus furiosus incorporation was in the region of septum formation while for the rod-shaped species Methanopyrus kandleri and Methanothermus sociabilis, a diffuse incorporation of cell wall material over the cell length was observed. Cell surface appendages like fimbriae/pili, fibers, or flagella were detectable by fluorescence staining only in a very few cases although their presence was proven by electron microscopy. Our data in addition prove that Alexa Fluor dyes can be used for in situ analyses at temperatures up to 100°C.


Asunto(s)
Archaea/crecimiento & desarrollo , Pared Celular/metabolismo , Archaea/metabolismo , Archaea/ultraestructura , Pared Celular/ultraestructura , Colorantes Fluorescentes/metabolismo , Microscopía Electrónica , Orgánulos/metabolismo , Orgánulos/ultraestructura , Coloración y Etiquetado/métodos
11.
Int J Syst Evol Microbiol ; 61(Pt 6): 1239-1245, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20622057

RESUMEN

A novel chemolithoautotrophic, hyperthermophilic methanogen was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, north of Iceland. Based on its 16S rRNA gene sequence, the strain belongs to the order Methanococcales within the genus Methanocaldococcus, with approximately 95 % sequence similarity to Methanocaldococcus jannaschii as its closest relative. Cells of the novel organism stained Gram-negative and appeared as regular to irregular cocci possessing more than 50 polar flagella. These cell appendages mediated not only motility but also adherence to abiotic surfaces and the formation of cell-cell contacts. The new isolate grew at 55-90 °C, with optimum growth at 80 °C. The optimum NaCl concentration for growth was 2.5 % (w/v), and the optimal pH was 6.5. The cells gained their energy exclusively by reduction of CO(2) with H(2). Selenate, tungstate and yeast extract stimulated growth significantly. The genome size was determined to be in the range 1.8-2.0 kb, and the G+C content of the genomic DNA was 30 mol%. Despite being physiologically nearly identical to the other members of the genus Methanocaldococcus, analysis of whole-cell proteins revealed significant differences. Based on the results from phylogenetic, morphological and protein analyses, we conclude that the novel strain represents a novel species of the genus Methanocaldococcus, for which the name Methanocaldococcus villosus sp. nov. is proposed (type strain KIN24-T80(T)  = DSM 22612(T)  = JCM 16315(T)).


Asunto(s)
Adhesión Celular , Flagelos/fisiología , Manantiales de Aguas Termales/microbiología , Methanococcales/clasificación , Methanococcales/aislamiento & purificación , Agua de Mar/microbiología , Procesos Autotróficos , Composición de Base , Dióxido de Carbono/metabolismo , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Calor , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Islandia , Locomoción , Methanococcales/genética , Methanococcales/fisiología , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo
12.
Methods Cell Biol ; 96: 47-69, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20869518

RESUMEN

The ultrastructural characterization of archaeal cells is done with both types of electron microscopy, transmission electron microscopy, and scanning electron microscopy. Depending on the scientific question, different preparation methods have to be employed and need to be optimized, according to the special cultivation conditions of these-in many cases extreme-microorganisms. Recent results using various electron microscopy techniques show that archaeal cells have a variety of cell appendages, used for motility as well as for establishing cell-cell and cell-surface contacts. Cryo-preparation methods, in particular high-pressure freezing and freeze-substitution, are crucial for obtaining results: (1) showing the cells in ultrathin sections in a good structural preservation, often with unusual shapes and subcellular complexity, and (2) enabling us to perform immunolocalization studies. This is an important tool to make a link between biochemical and ultrastructural studies.


Asunto(s)
Archaea/ultraestructura , Microscopía Electrónica/métodos , Archaea/fisiología , Técnicas de Cultivo de Célula , Grabado por Congelación/métodos , Substitución por Congelación/métodos , Microscopía Electrónica/instrumentación , Coloración Negativa/métodos
13.
J Bacteriol ; 191(20): 6465-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19684144

RESUMEN

Ignicoccus hospitalis forms many cell surface appendages, the Iho670 fibers (width, 14 nm; length, up to 20 mum), which constitute up to 5% of cellular protein. They are composed mainly of protein Iho670, possessing no homology to archaeal flagellins or fimbrins. Their existence as structures different from archaeal flagella or fimbriae have gone unnoticed up to now because they are very brittle.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Crenarchaeota/fisiología , Crenarchaeota/ultraestructura , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...