RESUMEN
Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.
RESUMEN
Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (â¼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.
Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Serotonina , Ratones , Animales , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/farmacología , Serotonina/metabolismo , Calcio/metabolismo , Receptores Sensibles al Calcio/metabolismo , Mecanotransducción Celular , Células Enteroendocrinas/metabolismoRESUMEN
ABSTRACT: Intrathecal application of contulakin-G (CGX), a conotoxin peptide and a neurotensin analogue, has been demonstrated to be safe and potentially analgesic in humans. However, the mechanism of action for CGX analgesia is unknown. We hypothesized that spinal application of CGX produces antinociception through activation of the presynaptic neurotensin receptor (NTSR)2. In this study, we assessed the mechanisms of CGX antinociception in rodent models of inflammatory and neuropathic pain. Intrathecal administration of CGX, dose dependently, inhibited thermal and mechanical hypersensitivities in rodents of both sexes. Pharmacological and clustered regularly interspaced short palindromic repeats/Cas9 editing of NTSR2 reversed CGX-induced antinociception without affecting morphine analgesia. Electrophysiological and gene editing approaches demonstrated that CGX inhibition was dependent on the R-type voltage-gated calcium channel (Cav2.3) in sensory neurons. Anatomical studies demonstrated coexpression of NTSR2 and Cav2.3 in dorsal root ganglion neurons. Finally, synaptic fractionation and slice electrophysiology recordings confirmed a predominantly presynaptic effect. Together, these data reveal a nonopioid pathway engaged by a human-tested drug to produce antinociception.
Asunto(s)
Canales de Calcio Tipo R , Conotoxinas , Neuralgia , Receptores de Neurotensina , Analgesia , Animales , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo R/metabolismo , Conotoxinas/farmacología , Femenino , Ganglios Espinales/metabolismo , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuropéptidos/farmacología , Receptores de Neurotensina/metabolismo , Células Receptoras Sensoriales/metabolismoRESUMEN
Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Ganglios Espinales/efectos de los fármacos , Limoninas/farmacología , Neuralgia/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Canales de Calcio/efectos de los fármacos , Canales de Calcio/fisiología , Femenino , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/fisiopatología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/virología , Limoninas/administración & dosificación , Limoninas/química , Neuralgia/metabolismo , Neuralgia/virología , Nociceptores/efectos de los fármacos , Preparaciones Farmacéuticas/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Tetrodotoxina/farmacologíaRESUMEN
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder resulting from germline mutations in the NF1 gene, which encodes neurofibromin. Patients experience a variety of symptoms, but pain in the context of NF1 remains largely underrecognized. Here, we characterize nociceptive signaling and pain behaviors in a miniswine harboring a disruptive NF1 mutation (exon 42 deletion). We present the first characterization of pain-related behaviors in a pig model of NF1, identifying unchanged agitation scores, lower tactile thresholds (allodynia), and decreased response latencies to thermal laser stimulation (hyperalgesia) in NF1 (females only) pigs. Male NF1 pigs with tumors showed reduced sleep quality and increased resting, 2 health-related quality-of-life symptoms found to be comorbid in people with NF1 pain. We explore these phenotypes in relationship to suppression of the increased activity of the N-type voltage-gated calcium (CaV2.2) channel by pharmacological antagonism of phosphorylation of a regulatory protein-the collapsin response mediator protein 2 (CRMP2), a known interactor of neurofibromin, and by targeting the interface between the α subunit of CaV2.2 and the accessory ß-subunits with small molecules. Our data support the use of NF1 pigs as a large animal model for studying NF1-associated pain and for understanding the pathophysiology of NF1. Our findings demonstrate the translational potential of 2 small molecules in reversing ion channel remodeling seen in NF1. Interfering with CaV2.2, a clinically validated target for pain management, might also be a promising therapeutic strategy for NF1-related pain management.
Asunto(s)
Genes de Neurofibromatosis 1/fisiología , Nocicepción/fisiología , Dolor/fisiopatología , Calidad de Vida , Animales , Canales de Calcio Tipo N/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/metabolismo , Masculino , Neurofibromina 1/genética , Neuronas/metabolismo , Dolor/patología , PorcinosRESUMEN
We report the development and characterization of a novel, injury-free rat model in which nociceptive sensitization after red light is observed in multiple body areas reminiscent of widespread pain in functional pain syndromes. Rats were exposed to red light-emitting diodes (RLED) (LEDs, 660 nm) at an intensity of 50 Lux for 8 hours daily for 5 days resulting in time- and dose-dependent thermal hyperalgesia and mechanical allodynia in both male and female rats. Females showed an earlier onset of mechanical allodynia than males. The pronociceptive effects of RLED were mediated through the visual system. RLED-induced thermal hyperalgesia and mechanical allodynia were reversed with medications commonly used for widespread pain, including gabapentin, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, and nonsteroidal anti-inflammatory drugs. Acetaminophen failed to reverse the RLED induced hypersensitivity. The hyperalgesic effects of RLED were blocked when bicuculline, a gamma-aminobutyric acid-A receptor antagonist, was administered into the rostral ventromedial medulla, suggesting a role for increased descending facilitation in the pain pathway. Key experiments were subjected to a replication study with randomization, investigator blinding, inclusion of all data, and high levels of statistical rigor. RLED-induced thermal hyperalgesia and mechanical allodynia without injury offers a novel injury-free rodent model useful for the study of functional pain syndromes with widespread pain. RLED exposure also emphasizes the different biological effects of different colors of light exposure. PERSPECTIVE: This study demonstrates the effect of light exposure on nociceptive thresholds. These biological effects of red LED add evidence to the emerging understanding of the biological effects of light of different colors in animals and humans. Understanding the underlying biology of red light-induced widespread pain may offer insights into functional pain states.
Asunto(s)
Modelos Animales de Enfermedad , Hiperalgesia/etiología , Luz/efectos adversos , Dolor/etiología , Animales , Femenino , Hiperalgesia/fisiopatología , Masculino , Dolor/fisiopatología , Ratas , Ratas Sprague-DawleyRESUMEN
Inhibition of voltage-gated calcium (CaV) channels is a potential therapy for many neurological diseases including chronic pain. Neuronal CaV1/CaV2 channels are composed of α, ß, γ and α2δ subunits. The ß subunits of CaV channels are cytoplasmic proteins that increase the surface expression of the pore-forming α subunit of CaV. We targeted the high-affinity protein-protein interface of CaVß's pocket within the CaVα subunit. Structure-based virtual screening of 50,000 small molecule library docked to the ß subunit led to the identification of 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide (IPPQ). This small molecule bound to CaVß and inhibited its coupling with N-type voltage-gated calcium (CaV2.2) channels, leading to a reduction in CaV2.2 currents in rat dorsal root ganglion sensory neurons, decreased presynaptic localization of CaV2.2 in vivo, decreased frequency of spontaneous excitatory postsynaptic potentials and miniature excitatory postsynaptic potentials, and inhibited release of the nociceptive neurotransmitter calcitonin gene-related peptide from spinal cord. IPPQ did not target opioid receptors nor did it engage inhibitory G protein-coupled receptor signaling. IPPQ was antinociceptive in naive animals and reversed allodynia and hyperalgesia in models of acute (postsurgical) and neuropathic (spinal nerve ligation, chemotherapy- and gp120-induced peripheral neuropathy, and genome-edited neuropathy) pain. IPPQ did not cause akinesia or motor impairment, a common adverse effect of CaV2.2 targeting drugs, when injected into the brain. IPPQ, a quinazoline analog, represents a novel class of CaV2.2-targeting compounds that may serve as probes to interrogate CaVα-CaVß function and ultimately be developed as a nonopioid therapeutic for chronic pain.
Asunto(s)
Analgésicos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio/efectos de los fármacos , Quinazolinas/uso terapéutico , Animales , Células CHO , Péptido Relacionado con Gen de Calcitonina/metabolismo , Simulación por Computador , Cricetulus , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Masculino , Neuralgia/tratamiento farmacológico , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismoRESUMEN
Neurofibromatosis type 1 (NF1) is the most common of a group of rare diseases known by the term, "Neurofibromatosis," affecting 1 in 3000 to 4000 people. NF1 patients present with, among other disease complications, café au lait patches, skin fold freckling, Lisch nodules, orthopedic complications, cutaneous neurofibromas, malignant peripheral nerve sheath tumors, cognitive impairment, and chronic pain. Although NF1 patients inevitably express pain as a debilitating symptom of the disease, not much is known about its manifestation in the NF1 disease, with most current information coming from sporadic case reports. Although these reports indicate the existence of pain, the molecular signaling underlying this symptom remains underexplored, and thus, we include a synopsis of the literature surrounding NF1 pain studies in 3 animal models: mouse, rat, and miniswine. We also highlight unexplored areas of NF1 pain research. As therapy for NF1 pain remains in various clinical and preclinical stages, we present current treatments available for patients and highlight the importance of future therapeutic development. Equally important, NF1 pain is accompanied by psychological complications in comorbidities with sleep, gastrointestinal complications, and overall quality of life, lending to the importance of investigation into this understudied phenomenon of NF1. In this review, we dissect the presence of pain in NF1 in terms of psychological implication, anatomical presence, and discuss mechanisms underlying the onset and potentiation of NF1 pain to evaluate current therapies and propose implications for treatment of this severely understudied, but prevalent symptom of this rare disease.
Asunto(s)
Neurofibromatosis 1/complicaciones , Dolor/etiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neurofibromatosis 1/fisiopatología , Dolor/fisiopatología , Manejo del Dolor , Ratas , PorcinosRESUMEN
The peripherally expressed voltage-gated sodium NaV1.7 (gene SCN9A) channel boosts small stimuli to initiate firing of pain-signaling dorsal root ganglia (DRG) neurons and facilitates neurotransmitter release at the first synapse within the spinal cord. Mutations in SCN9A produce distinct human pain syndromes. Widely acknowledged as a "gatekeeper" of pain, NaV1.7 has been the focus of intense investigation but, to date, no NaV1.7-selective drugs have reached the clinic. Elegant crystallographic studies have demonstrated the potential of designing highly potent and selective NaV1.7 compounds but their therapeutic value remains untested. Transcriptional silencing of NaV1.7 by a naturally expressed antisense transcript has been reported in rodents and humans but whether this represents a viable opportunity for designing NaV1.7 therapeutics is currently unknown. The demonstration that loss of NaV1.7 function is associated with upregulation of endogenous opioids and potentiation of mu- and delta-opioid receptor activities, suggests that targeting only NaV1.7 may be insufficient for analgesia. However, the link between opioid-dependent analgesic mechanisms and function of sodium channels and intracellular sodium-dependent signaling remains controversial. Thus, additional new targets - regulators, modulators - are needed. In this context, we mine the literature for the known interactome of NaV1.7 with a focus on protein interactors that affect the channel's trafficking or link it to opioid signaling. As a case study, we present antinociceptive evidence of allosteric regulation of NaV1.7 by the cytosolic collapsin response mediator protein 2 (CRMP2). Throughout discussions of these possible new targets, we offer thoughts on the therapeutic implications of modulating NaV1.7 function in chronic pain.
Asunto(s)
Analgésicos/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Animales , Dolor Crónico/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismoRESUMEN
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Asunto(s)
Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo T/metabolismo , Infecciones por VIH/complicaciones , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Paclitaxel/toxicidad , Triterpenos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/toxicidad , Células CHO , Cricetulus , Diprenorfina/farmacocinética , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Triterpenos Pentacíclicos , Traumatismos de los Nervios Periféricos/inducido químicamente , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/virología , Ratas , Ratas Sprague-Dawley , Tritio/farmacocinética , Ácido BetulínicoRESUMEN
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Médula Espinal/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Técnicas de Cultivo de Órganos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiologíaRESUMEN
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Asunto(s)
Diterpenos/farmacología , Tetrodotoxina/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Femenino , Ganglios Espinales/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje/metabolismoRESUMEN
Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.
Asunto(s)
Modelos Animales de Enfermedad , Neurofibromatosis 1 , Neurofibromina 1/metabolismo , Porcinos , Animales , Manchas Café con Leche , Exones/genética , Fibroblastos/metabolismo , Proteínas Activadoras de GTPasa/genética , Ganglios Espinales/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Canales Iónicos , Aprendizaje , Masculino , Memoria , Mutación , Neurofibroma , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/fisiología , Transducción de SeñalRESUMEN
Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease linked to mutations of the Nf1 gene. Patients with NF1 commonly experience severe pain. Studies on mice with Nf1 haploinsufficiency have been instructive in identifying sensitization of ion channels as a possible cause underlying the heightened pain suffered by patients with NF1. However, behavioral assessments of Nf1 mice have led to uncertain conclusions about the potential causal role of Nf1 in pain. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) genome editing system to create and mechanistically characterize a novel rat model of NF1-related pain. Targeted intrathecal delivery of guide RNA/Cas9 nuclease plasmid in combination with a cationic polymer was used to generate allele-specific C-terminal truncation of neurofibromin, the protein encoded by the Nf1 gene. Rats with truncation of neurofibromin, showed increases in voltage-gated calcium (specifically N-type or CaV2.2) and voltage-gated sodium (particularly tetrodotoxin-sensitive) currents in dorsal root ganglion neurons. These gains-of-function resulted in increased nociceptor excitability and behavioral hyperalgesia. The cytosolic regulatory protein collapsin response mediator protein 2 (CRMP2) regulates activity of these channels, and also binds to the targeted C-terminus of neurofibromin in a tripartite complex, suggesting a possible mechanism underlying NF1 pain. Prevention of CRMP2 phosphorylation with (S)-lacosamide resulted in normalization of channel current densities, excitability, as well as of hyperalgesia following CRISPR/Cas9 truncation of neurofibromin. These studies reveal the protein partners that drive NF1 pain and suggest that CRMP2 is a key target for therapeutic intervention.
Asunto(s)
Acetamidas/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Neurofibromina 1/genética , Dolor/genética , Animales , Sistemas CRISPR-Cas/efectos de los fármacos , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Femenino , Ganglios Espinales/metabolismo , Genes de Neurofibromatosis 1/fisiología , Lacosamida , Masculino , Neuronas/metabolismo , Dolor/metabolismo , Fosforilación , Ratas Sprague-DawleyRESUMEN
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.