Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Hematol Oncol ; 13(1): 34, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528594

RESUMEN

BACKGROUND: Mantle cell lymphoma (MCL) is a chronically relapsing malignancy with deregulated cell cycle progression. We analyzed efficacy, mode of action, and predictive markers of susceptibility to palbociclib, an approved CDK 4/6 inhibitor, and its combination with venetoclax, a BCL2 inhibitor. METHODS: A panel of nine MCL cell lines were used for in vitro experiments. Four patient derived xenografts (PDX) obtained from patients with chemotherapy and ibrutinib-refractory MCL were used for in vivo proof-of-concept studies. Changes of the mitochondrial membrane potential, energy-metabolic pathways, AKT activity, and pro-apoptotic priming of MCL cells were evaluated by JC-1 staining, Seahorse XF analyser, genetically encoded fluorescent AKT reporter, and BH3 profiling, respectively. MCL clones with gene knockout or transgenic (over)expression of CDKN2A, MYC, CDK4, and RB1 were used to estimate impact of these aberrations on sensitivity to palbociclib, and venetoclax. RESULTS: Co-targeting MCL cells with palbociclib and venetoclax induced cytotoxic synergy in vitro and in vivo. Molecular mechanisms responsible for the observed synthetic lethality comprised palbociclib-mediated downregulation of anti-apoptotic MCL1, increased levels of proapoptotic BIM bound on both BCL2, and BCL-XL and increased pro-apoptotic priming of MCL cells mediated by BCL2-independent mechanisms, predominantly palbociclib-triggered metabolic and mitochondrial stress. Loss of RB1 resulted in palbociclib resistance, while deletion of CDKN2A or overexpression of CDK4, and MYC genes did not change sensitivity to palbociclib. CONCLUSIONS: Our data strongly support investigation of the chemotherapy-free palbociclib and venetoclax combination as an innovative treatment strategy for post-ibrutinib MCL patients without RB1 deletion.

2.
Haematologica ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385294

RESUMEN

Innovative therapeutic strategies have emerged over the past decade to improve outcomes for most lymphoma patients. Nevertheless, the aggressive presentation seen in high-risk mantle cell lymphoma (MCL) patients remains an unmet medical need. The highly proliferative cells that characterize these tumors depend on nucleotide synthesis to ensure high DNA replication and RNA synthesis. To take advantage of this vulnerability, STP-B, a clinically available small molecule selectively targeting CTP synthase 1 (CTPS1) has been recently developed. CTPS1 is a key enzyme of the pyrimidine synthesis pathway mediated through its unique ability to provide enough CTP in highly proliferating cells. Herein, we demonstrated that CTPS1 was expressed in all MCL cells, and that its high expression was associated with unfavorable outcomes for patients treated with chemotherapy. Using aggressive MCL models characterized by blastoid morphology, TP53 mutation or polyresistance to targeted therapies, we showed that STP-B was highly effective at nanomolar concentrations in vitro and in vivo, irrespective of these high-risk features. Inhibition of CTPS1 rapidly leads to cell cycle arrest in early S-phase accompanied by inhibition of translation, including of the anti-apoptotic protein MCL1. Consequently, CTPS1 inhibition induced synergistic cell death in combination with the selective BCL2 inhibitor venetoclax, both in vitro and in vivo. Overall, our study identified CTPS1 as a promising target for MCL patients and provided a mechanism-based combination with the BCL2 inhibitor venetoclax for the design of future chemotherapy-free treatment regimens to overcome resistance.

3.
Blood ; 143(13): 1242-1258, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096363

RESUMEN

ABSTRACT: To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Pirimidinas , Tiofenos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral , Apoptosis , Antineoplásicos/uso terapéutico
4.
Blood ; 142(18): 1543-1555, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37562004

RESUMEN

A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Línea Celular Tumoral , Mutación con Ganancia de Función , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células del Manto/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
5.
Front Oncol ; 13: 1196005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534243

RESUMEN

Secondary plasma cell leukemia (sPCL) is a rare form of aggressive plasma cell malignancy arising mostly at end-stage refractory multiple myeloma and consequently presenting limited therapeutic options. We analyzed 13 sPCL for their sensitivity to BH3 mimetics targeting either BCL2 (venetoclax) or BCLXL (A1155463) and showed that 3 sPCL were efficiently killed by venetoclax and 3 sPCL by A1155463. Accordingly, BH3 profiling of 2 sPCL sensitive to BCLXL inhibition confirmed their high BCLXL primed profile. While targeting BCLXL using BH3 mimetics induces platelets on-target drug toxicity, the recent development of DT2216, a clinical-stage BCLXL proteolysis targeting chimera PROTAC compound, provides an alternative strategy to target BCLXL. Indeed, DT2216 specifically degrades BCLXL via VHL E3 ligase, without inducing thrombocytopenia. We demonstrated in human myeloma cell lines and sPCL that sensitivity to DT2216 strongly correlated with the sensitivity to A1155463. Interestingly, we showed that low doses of DT2216 (nM range) were sufficient to specifically degrade BCLXL after 48 hours of treatment, consistent with VHL expression, in all cell lines but irrespectively to DT2216 sensitivity. In myeloma cells, DT2216 induced apoptotic cell death and triggered BAX and BAK activation. In conclusion, our study demonstrated that patients with sPCL addicted to BCLXL, a small but a very challenging group, could potentially receive therapeutic benefit from DT2216. Clinical trials of DT2216 in this subset of sPCL patients are warranted.

6.
Haematologica ; 107(12): 2905-2917, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263985

RESUMEN

Aggressive B-cell malignancies, such as mantle cell lymphoma (MCL), are microenvironment-dependent tumors and a better understanding of the dialogs occurring in lymphoma-protective ecosystems will provide new perspectives to increase treatment efficiency. To identify novel molecular regulations, we performed a transcriptomic analysis based on the comparison of circulating MCL cells (n=77) versus MCL lymph nodes (n=107) together with RNA sequencing of malignant (n=8) versus normal B-cell (n=6) samples. This integrated analysis led to the discovery of microenvironment-dependent and tumor-specific secretion of interleukin-32 beta (IL32ß), whose expression was confirmed in situ within MCL lymph nodes by multiplex immunohistochemistry. Using ex vivo models of primary MCL cells (n=23), we demonstrated that, through the secretion of IL32ß, the tumor was able to polarize monocytes into specific MCL-associated macrophages, which in turn favor tumor survival. We highlighted that while IL32ß-stimulated macrophages secreted several protumoral factors, they supported tumor survival through a soluble dialog, mostly driven by BAFF. Finally, we demonstrated the efficacy of selective NIK/alternative-NFkB inhibition to counteract microenvironment-dependent induction of IL32ß and BAFF-dependent survival of MCL cells. These data uncovered the IL32ß/BAFF axis as a previously undescribed pathway involved in lymphoma-associated macrophage polarization and tumor survival, which could be counteracted through selective NIK inhibition.


Asunto(s)
Factor Activador de Células B , Interleucinas , Linfoma de Células del Manto , Proteínas Serina-Treonina Quinasas , Adulto , Humanos , Línea Celular Tumoral , Interleucinas/metabolismo , Linfoma de Células del Manto/patología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Microambiente Tumoral , Factor Activador de Células B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasa de Factor Nuclear kappa B
7.
Clin Epigenetics ; 13(1): 174, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530900

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. RESULTS: Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. CONCLUSIONS: Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/administración & dosificación , Metiltransferasas/farmacología , Mieloma Múltiple/tratamiento farmacológico , Resistencia a Medicamentos/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/farmacología , Humanos , Metiltransferasas/administración & dosificación , Mieloma Múltiple/fisiopatología
8.
Cell Death Dis ; 11(5): 316, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371863

RESUMEN

Multiple myeloma is a plasma cell malignancy that escapes from apoptosis by heterogeneously over-expressing anti-apoptotic BCL2 proteins. Myeloma cells with a t(11;14) translocation present a particular vulnerability to BCL2 inhibition while a majority of myeloma cells relies on MCL1 for survival. The present study aimed to determine whether the combination of BCL2 and MCL1 inhibitors at low doses could be of benefit for myeloma cells beyond the single selective inhibition of BCL2 or MCL1. We identified that half of patients were not efficiently targeted neither by BCL2 inhibitor nor MCL1 inhibitor. Seventy percent of these myeloma samples, either from patients at diagnosis or relapse, presented a marked increase of apoptosis upon low dose combination of both inhibitors. Interestingly, primary cells from a patient in progression under venetoclax treatment were not sensitive ex vivo to neither venetoclax nor to MCL1 inhibitor, whereas the combination of both efficiently induced cell death. This finding suggests that the combination could overcome venetoclax resistance. The efficacy of the combination was also confirmed in U266 xenograft model resistant to BCL2 and MCL1 inhibitors. Mechanistically, we demonstrated that the combination of both inhibitors favors apoptosis in a BAX/BAK dependent manner. We showed that activated BAX was readily increased upon the inhibitor combination leading to the formation of BAK/BAX hetero-complexes. We found that BCLXL remains a major resistant factor of cell death induced by this combination. The present study supports a rational for the clinical use of venetoclax/S63845 combination in myeloma patients with the potential to elicit significant clinical activity when both single inhibitors would not be effective but also to overcome developed in vivo venetoclax resistance.


Asunto(s)
Mieloma Múltiple/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Pirimidinas/farmacología , Tiofenos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/efectos de los fármacos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
9.
Oncogene ; 39(14): 2934-2947, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32034308

RESUMEN

B-cell receptor (BCR) signaling pathways and interactions with the tumor microenvironment account for mantle cell lymphoma (MCL) cells survival in lymphoid organs. In several MCL cases, the WNT/ß-catenin canonical pathway is activated and ß-catenin accumulates into the nucleus. As both BCR and ß-catenin are important mediators of cell survival and interaction with the microenvironment, we investigated the crosstalk between BCR and WNT/ß-catenin signaling and analyzed their impact on cellular homeostasis as well as their targeting by specific inhibitors. ß-catenin was detected in all leukemic MCL samples and its level of expression rapidly increased upon BCR stimulation. This stabilization was hampered by the BCR-pathway inhibitor Ibrutinib, supporting ß-catenin as an effector of the BCR signaling. In parallel, MCL cells as compared with normal B cells expressed elevated levels of WNT16, a NF-κB target gene. Its expression increased further upon BCR stimulation to participate to the stabilization of ß-catenin. Upon BCR stimulation, ß-catenin translocated into the nucleus but did not induce a Wnt-like transcriptional response, i.e., TCF/LEF dependent. ß-catenin rather participated to the regulation of NF-κB transcriptional targets, such as IL6, IL8, and IL1. Oligo pull down and chromatin immunoprecipitation experiments demonstrated that ß-catenin is part of a protein complex that binds the NF-κB DNA consensus sequence, strengthening the idea of an association between the two proteins. An inhibitor targeting ß-catenin transcriptional interactions hindered both NF-κB DNA recruitment and induced primary MCL cells apoptosis. Thus, ß-catenin likely represents another player through which BCR signaling impacts on MCL cell survival.


Asunto(s)
Linfoma de Células del Manto/genética , FN-kappa B/genética , Receptores de Antígenos de Linfocitos B/genética , Transcripción Genética/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Apoptosis/genética , Linfocitos B/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Supervivencia Celular/genética , Femenino , Células HEK293 , Homeostasis/genética , Humanos , Ratones , Factores de Transcripción TCF/genética , Microambiente Tumoral/genética
10.
Leukemia ; 33(10): 2442-2453, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30940906

RESUMEN

The microenvironment strongly influences mantle cell lymphoma (MCL) survival, proliferation, and chemoresistance. However, little is known regarding the molecular characterization of lymphoma niches. Here, we focused on the interplay between MCL cells and the associated monocytes/macrophages. Using circulating MCL cells (n = 58), we showed that, through the secretion of CSF1 and, to a lesser extent, IL-10, MCL polarized monocytes into specific CD163+ M2-like macrophages (MϕMCL). In turn, MϕMCL favored lymphoma survival and proliferation ex vivo. We next demonstrated that BTK inhibition abrogated CSF1 and IL-10 production in MCL cells, leading to the inhibition of macrophage polarization and consequently resulting in the suppression of microenvironment-dependent MCL expansion. In vivo, we showed that CSF1 and IL-10 plasma concentrations were higher in MCL patients than in healthy donors, and that monocytes from MCL patients overexpressed CD163. Further analyses of serial samples from ibrutinib-treated patients (n = 8) highlighted a rapid decrease of CSF1, IL-10, and CD163 in responsive patients. Finally, we showed that targeting the CSF1R abrogated MϕMCL-dependent MCL survival, irrespective of their sensitivity to ibrutinib. These data reinforced the role of the microenvironment in lymphoma and suggested that macrophages are a potential target for developing novel therapeutic strategies in MCL.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma de Células del Manto/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Adenina/análogos & derivados , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Interleucina-10/metabolismo , Linfoma de Células del Manto/metabolismo , Macrófagos/metabolismo , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Piperidinas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Receptores de Superficie Celular/metabolismo , Microambiente Tumoral/efectos de los fármacos
11.
Cancers (Basel) ; 11(4)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925767

RESUMEN

BACKGROUND: Multiple myeloma (MM) is the second most common hematological cancer after lymphoma. It is characterized by the accumulation of clonal malignant plasma cells within the bone marrow. The development of drug resistance remains a major problem for effective treatment of MM. Understand the mechanisms underlying drug resistance in MM is a focal point to improve MM treatment. METHODS: In the current study, we analyzed further the role of redox imbalance induction in melphalan-induced toxicity both in human myeloma cell lines (HMCLs) and primary myeloma cells from patients. RESULTS: We developed an in-vitro model of short-term resistance to high-dose melphalan and identified that pretreatment with physiological concentration of GSH protects HMCLs from melphalan-induced cell cycle arrest and cytotoxicity. We validated these results using primary MM cells from patients co-cultured with their bone marrow microenvironment. GSH did not affect the ability of melphalan to induce DNA damages in MM cells. Interestingly, melphalan induced reactive oxygen species, a significant decrease in GSH concentration, protein and lipd oxydation together with NRF2 (NF-E2-related factor 2) pathway activation. CONCLUSIONS: Our data demonstrate that antioxidant defenses confers resistance to high dose melphalan in MM cells, supporting that redox status in MM cells could be determinant for patients' response to melphalan.

12.
Blood Adv ; 2(23): 3492-3505, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30530776

RESUMEN

In this study, we assessed the sensitivity of myeloma cells to the oncolytic measles virus (MV) in relation to p53 using 37 cell lines and 23 primary samples. We showed that infection and cell death were correlated with CD46 expression, which was associated with TP53 status; TP53 abn cell lines highly expressed CD46 and were preferentially infected by MV when compared with the TP53 wt cell lines (P = .046 and P = .045, respectively). Infection of myeloma cells was fully dependent on CD46 expression in both cell lines and primary cells. In the TP53 wt cell lines, but not the TP53 abn cell lines, activation of the p53 pathway with nutlin3a inhibited both CD46 expression and MV infection, while TP53 silencing reciprocally increased CD46 expression and MV infection. We showed using a p53 chromatin immunoprecipitation assay and microRNA assessment that CD46 gene expression was directly and indirectly regulated by p53. Primary myeloma cells overexpressed CD46 as compared with normal cells and were highly infected and killed by MV. CD46 expression and MV infection were inhibited by nutlin3a in primary p53-competent myeloma cells, but not in p53-deficient myeloma cells, and the latter were highly sensitive to MV infection. In summary, myeloma cells were highly sensitive to MV and infection inhibition by the p53 pathway was abrogated in p53-deficient myeloma cells. These results argue for an MV-based clinical trial for patients with p53 deficiency.


Asunto(s)
Virus del Sarampión/fisiología , Proteína Cofactora de Membrana/metabolismo , Mieloma Múltiple/patología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Proteína Cofactora de Membrana/antagonistas & inhibidores , Proteína Cofactora de Membrana/genética , MicroARNs/metabolismo , Mieloma Múltiple/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
13.
Front Oncol ; 8: 645, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666297

RESUMEN

BCL2-family proteins have a central role in the mitochondrial apoptosis machinery and their expression is known to be deregulated in many cancer types. Effort in the development of small molecules that selectively target anti-apoptotic members of this family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising preclinical and clinical activity in B cell malignancies. However, several mechanisms of intrinsic or acquired resistance have been described ex vivo therefore predictive markers of response as well as mechanism-based combinations have to be designed. In the present study, we analyzed the expression of the BCL2-family genes across 10 mature B cell malignancies through computational normalization of 21 publicly available Affimetrix datasets gathering 1,219 patient samples. To better understand the deregulation of anti- and pro-apoptotic members of the BCL2-family in hematological disorders, we first compared gene expression profiles of malignant B cells to their relative normal control (naïve B cell to plasma cells, n = 37). We further assessed BCL2-family expression according to tissue localization i.e., peripheral blood, bone marrow, and lymph node, molecular subgroups or disease status i.e., indolent to aggressive. Across all cancer types, we showed that anti-apoptotic genes are upregulated while pro-apoptotic genes are downregulated when compared to normal counterpart cells. Of interest, our analysis highlighted that, independently of the nature of malignant B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in tumor niches, suggesting a central role of the microenvironment in their regulation. In addition, we showed selective modulations across molecular subgroups and showed that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by integrating recent data on venetoclax-monotherapy clinical activity with the expression of BCL2-family members involved in the venetoclax response, we determined that the ratio (BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response for mature B cell malignancies in vivo.

14.
Blood ; 128(24): 2808-2818, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697772

RESUMEN

Mantle cell lymphoma (MCL) accumulates in lymphoid organs, but disseminates early on in extranodal tissues. Although proliferation remains located in lymphoid organs only, suggesting a major role of the tumor ecosystem, few studies have assessed MCL microenvironment. We therefore cocultured primary circulating MCL cells from 21 patients several weeks ex vivo with stromal or lymphoid-like (CD40L) cells to determine which interactions could support their proliferation. We showed that coculture with lymphoid-like cells, but not stromal cells, induced cell-cycle progression, which was amplified by MCL-specific cytokines (insulin-like growth factor-1, B-cell activating factor, interleukin-6, interleukin-10). Of interest, we showed that our model recapitulated the MCL in situ molecular signatures (ie, proliferation, NF-κB, and survival signatures). We further demonstrated that proliferating MCL harbored an imbalance in Bcl-2 family expression, leading to a consequent loss of mitochondrial priming. Of interest, this loss of priming was overcome by the type II anti-CD20 antibody obinutuzumab, which counteracted Bcl-xL induction through NF-κB inhibition. Finally, we showed that the mitochondrial priming directly correlated with the sensitivity toward venetoclax and alkylating drugs. By identifying the microenvironment as the major support for proliferation and drug resistance in MCL, our results highlight a selective approach to target the lymphoma niche.


Asunto(s)
Linfoma de Células del Manto/patología , Linfoma de Células del Manto/terapia , Terapia Molecular Dirigida , Microambiente Tumoral , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD20/inmunología , Ligando de CD40/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Tejido Linfoide/patología , Masculino , Mesodermo/patología , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...