Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753485

RESUMEN

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Replicación del ADN/efectos de los fármacos , Línea Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN Polimerasa II/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Recombinasa Rad51/metabolismo
2.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37364916

RESUMEN

The maintenance of genome integrity relies on replication fork stabilization upon encountering endogenous and exogenous sources of DNA damage. How this process is coordinated with the local chromatin environment remains poorly defined. Here, we show that the replication-dependent histone H1 variants interact with the tumour suppressor BRCA1 in a replication stress-dependent manner. Transient loss of the replication-dependent histones H1 does not affect fork progression in unchallenged conditions but leads to the accumulation of stalled replication intermediates. Upon challenge with hydroxyurea, cells deficient for histone H1 variants fail to recruit BRCA1 to stalled replication forks and undergo MRE11-dependent fork resection and collapse, which ultimately leads to genomic instability and cell death. In summary, our work defines an essential role of the replication-dependent histone H1 variants in mediating BRCA1-dependent fork protection and genome stability.


Asunto(s)
Proteína BRCA2 , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Proteína BRCA2/genética , Replicación del ADN/genética , Cromatina/genética , Inestabilidad Genómica/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo
3.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455556

RESUMEN

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


Asunto(s)
Roturas del ADN de Doble Cadena , Neoplasias , Humanos , Replicación del ADN/genética , Inestabilidad Genómica , ADN de Cadena Simple/genética , Mutaciones Letales Sintéticas , Reparación del ADN por Unión de Extremidades , Neoplasias/genética
4.
Cell Rep ; 40(7): 111207, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977492

RESUMEN

Iron is essential for deoxyribonucleotides production and for enzymes containing an Fe-S cluster involved in DNA replication and repair. How iron bioavailability and DNA metabolism are coordinated remains poorly understood. NCOA4 protein mediates autophagic degradation of ferritin to maintain iron homeostasis and inhibits DNA replication origin activation via hindrance of the MCM2-7 DNA helicase. Here, we show that iron deficiency inhibits DNA replication, parallel to nuclear NCOA4 stabilization. In iron-depleted cells, NCOA4 knockdown leads to unscheduled DNA synthesis, with replication stress, genome instability, and cell death. In mice, NCOA4 genetic inactivation causes defective intestinal regeneration upon dextran sulfate sodium-mediated injury, with DNA damage, defective cell proliferation, and cell death; in intestinal organoids, this is fostered by iron depletion. In summary, we describe a NCOA4-dependent mechanism that coordinates iron bioavailability and DNA replication. This function prevents replication stress, maintains genome integrity, and sustains high rates of cell proliferation during tissue regeneration.


Asunto(s)
Hierro , Coactivadores de Receptor Nuclear , Animales , Disponibilidad Biológica , ADN/metabolismo , Replicación del ADN , Ferritinas/metabolismo , Hierro/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Factores de Transcripción/metabolismo
5.
Cell Rep ; 39(9): 110871, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649380

RESUMEN

The maintenance of genome stability relies on coordinated control of origin activation and replication fork progression. How the interplay between these processes influences human genetic disease and cancer remains incompletely characterized. Here we show that mouse cells featuring Polε instability exhibit impaired genome-wide activation of DNA replication origins, in an origin-location-independent manner. Strikingly, Trp53 ablation in primary Polε hypomorphic cells increased Polε levels and origin activation and reduced DNA damage in a transcription-dependent manner. Transcriptome analysis of primary Trp53 knockout cells revealed that the TRP53-CDKN1A/P21 axis maintains appropriate levels of replication factors and CDK activity during unchallenged S phase. Loss of this control mechanism deregulates origin activation and perturbs genome-wide replication fork progression. Thus, while our data support an impaired origin activation model for genetic diseases affecting CMG formation, we propose that loss of the TRP53-CDKN1A/P21 tumor suppressor axis induces inappropriate origin activation and deregulates genome-wide fork progression.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , ADN Polimerasa II , Replicación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , Origen de Réplica , Proteína p53 Supresora de Tumor , Animales , Proteínas de Ciclo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Ratones , Proteínas de Unión a Poli-ADP-Ribosa/genética , Fase S , Proteína p53 Supresora de Tumor/genética
6.
Biochem Soc Trans ; 50(1): 309-320, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35129614

RESUMEN

Pol epsilon is a tetrameric assembly that plays distinct roles during eukaryotic chromosome replication. It catalyses leading strand DNA synthesis; yet this function is dispensable for viability. Its non-catalytic domains instead play an essential role in the assembly of the active replicative helicase and origin activation, while non-essential histone-fold subunits serve a critical function in parental histone redeposition onto newly synthesised DNA. Furthermore, Pol epsilon plays a structural role in linking the RFC-Ctf18 clamp loader to the replisome, supporting processive DNA synthesis, DNA damage response signalling as well as sister chromatid cohesion. In this minireview, we discuss recent biochemical and structural work that begins to explain various aspects of eukaryotic chromosome replication, with a focus on the multiple roles of Pol epsilon in this process.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Cromosomas/metabolismo , ADN/genética , ADN Polimerasa II/metabolismo , Replicación del ADN , Histonas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33947663

RESUMEN

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias de la Mama/genética , Carcinoma Ductal/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Animales , Línea Celular Tumoral , Inestabilidad Cromosómica , Replicación del ADN , Femenino , Humanos , Ratones
8.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33333017

RESUMEN

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Nucleosomas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
9.
Trends Genet ; 37(4): 317-336, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33041047

RESUMEN

Human development and tissue homeostasis depend on the regulated control of cellular proliferation and differentiation. DNA replication is essential to couple genome duplication and cell division with the establishment and maintenance of cellular differentiation programs. In eukaryotes, DNA replication is performed by a large machine known as the 'replisome,' which is strictly regulated in a cell cycle-dependent manner. Inherited mutations of replisome components have been identified in a range of genetic conditions characterised by developmental abnormalities and reduced organismal growth in addition to an involvement of the immune and endocrine systems and/or heightened tumour predisposition. Here, we review the current knowledge of the molecular genetics of replisome dysfunction disorders and discuss recent mechanistic insights into their pathogenesis, with a focus on the specific steps of DNA replication affected in these human diseases.


Asunto(s)
Replicación del ADN/genética , Enfermedades Genéticas Congénitas/genética , Complejos Multiproteicos/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Enfermedades Genéticas Congénitas/etiología , Humanos , Mutación/genética , Secuenciación Completa del Genoma
10.
Cell Rep ; 33(12): 108546, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357438

RESUMEN

Regulator of telomere length 1 (RTEL1) is an essential helicase that maintains telomere integrity and facilitates DNA replication. The source of replication stress in Rtel1-deficient cells remains unclear. Here, we report that loss of RTEL1 confers extensive transcriptional changes independent of its roles at telomeres. The majority of affected genes in Rtel1-/- cells possess G-quadruplex (G4)-DNA-forming sequences in their promoters and are similarly altered at a transcriptional level in wild-type cells treated with the G4-DNA stabilizer TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine). Failure to resolve G4-DNAs formed in the displaced strand of RNA-DNA hybrids in Rtel1-/- cells is suggested by increased R-loops and elevated transcription-replication collisions (TRCs). Moreover, removal of R-loops by RNaseH1 overexpression suppresses TRCs and alleviates the global replication defects observed in Rtel1-/- and Rtel1PIP_box knockin cells and in wild-type cells treated with TMPyP4. We propose that RTEL1 unwinds G4-DNA/R-loops to avert TRCs, which is important to prevent global deregulation in both transcription and DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , G-Cuádruplex , Animales , ADN/biosíntesis , ADN/genética , Humanos , Ratones , Transcripción Genética
11.
Cell Rep ; 31(8): 107675, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460026

RESUMEN

Genome stability requires coordination of DNA replication origin activation and replication fork progression. RTEL1 is a regulator of homologous recombination (HR) implicated in meiotic cross-over control and DNA repair in C. elegans. Through a genome-wide synthetic lethal screen, we uncovered an essential genetic interaction between RTEL1 and DNA polymerase (Pol) epsilon. Loss of POLE4, an accessory subunit of Pol epsilon, has no overt phenotype in worms. In contrast, the combined loss of POLE-4 and RTEL-1 results in embryonic lethality, accumulation of HR intermediates, genome instability, and cessation of DNA replication. Similarly, loss of Rtel1 in Pole4-/- mouse cells inhibits cellular proliferation, which is associated with persistent HR intermediates and incomplete DNA replication. We propose that RTEL1 facilitates genome-wide fork progression through its ability to metabolize DNA secondary structures that form during DNA replication. Loss of this function becomes incompatible with cell survival under conditions of reduced origin activation, such as Pol epsilon hypomorphy.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Animales , Humanos
12.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30503519

RESUMEN

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Asunto(s)
Insuficiencia Suprarrenal/genética , ADN Polimerasa II/genética , Retardo del Crecimiento Fetal/genética , Mutación/genética , Osteocondrodisplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Anomalías Urogenitales/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Replicación del ADN/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
13.
Mol Cell ; 72(1): 112-126.e5, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30217558

RESUMEN

Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Histonas/biosíntesis , Nucleoproteínas/genética , Cromatina/genética , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN Polimerasa III/química , Proteínas de Unión al ADN/química , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoproteínas/química , Nucleosomas/química , Nucleosomas/genética , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/genética , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica
14.
Mol Cell ; 70(4): 707-721.e7, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754823

RESUMEN

DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.


Asunto(s)
Carcinogénesis/patología , ADN Polimerasa II/química , ADN Polimerasa II/fisiología , Replicación del ADN , Discapacidades del Desarrollo/etiología , Trastornos del Crecimiento/etiología , Leucopenia/etiología , Animales , Carcinogénesis/genética , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Proteína p53 Supresora de Tumor/fisiología
15.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290468

RESUMEN

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , Homeostasis del Telómero , Animales , Línea Celular , Células Cultivadas , ADN Helicasas/metabolismo , Glicósido Hidrolasas/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , RecQ Helicasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
16.
Mol Cell Endocrinol ; 460: 24-35, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28652169

RESUMEN

Here we describe a conditional doxycycline-dependent mouse model of RET/PTC3 (NCOA4-RET) oncogene-induced thyroid tumorigenesis. In these mice, after 10 days of doxycycline (dox) administration, RET/PTC3 expression induced mitogen activated protein kinase (MAPK) stimulation and a proliferative response which resulted in the formation of hyperplastic thyroid lesions. This was followed, after 2 months, by growth arrest accompanied by typical features of oncogene-induced senescence (OIS), including upregulation of p16INK4A and p21CIP, positivity at the Sudan black B, activation of the DNA damage response (DDR) markers γH2AX and pChk2 T68, and induction of p53 and p19ARF. After 5 months, about half of thyroid lesions escaped OIS and formed tumors that remained dependent on RET/PTC3 expression. This progression was accompanied by activation of AKT-FOXO1/3a pathway and increased serum TSH levels.


Asunto(s)
Senescencia Celular , Oncogenes , Neoplasias de la Tiroides/patología , Animales , Apoptosis , Bovinos , Daño del ADN , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Factores de Transcripción Forkhead/metabolismo , Hiperplasia , Masculino , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Epiteliales Tiroideas/patología , Glándula Tiroides/patología , Tirotropina/metabolismo , Tiroxina/metabolismo
17.
Nat Rev Mol Cell Biol ; 18(9): 563-573, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28655905

RESUMEN

Covalent DNA-protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11-RAD50-NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.


Asunto(s)
Aductos de ADN/toxicidad , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Antineoplásicos/efectos adversos , Aductos de ADN/metabolismo , Inestabilidad Genómica , Humanos , Neoplasias/tratamiento farmacológico
18.
Mol Cell ; 64(4): 688-703, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27871365

RESUMEN

Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled by several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Reparación del ADN , Proteínas de Unión al ADN/química , ADN/química , Proteínas de Schizosaccharomyces pombe/química , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Cisplatino/química , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Formaldehído/química , Células HeLa , Humanos , Cinética , Ratones , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
19.
Cell Rep ; 14(3): 411-421, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26776506

RESUMEN

The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2-3 mg/kg), mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg), mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239-614) restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.


Asunto(s)
Hierro/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Anemia Hipocrómica/metabolismo , Anemia Hipocrómica/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Duodeno/metabolismo , Duodeno/patología , Eritrocitos/citología , Eritrocitos/metabolismo , Eritropoyesis/efectos de los fármacos , Femenino , Ferritinas/metabolismo , Hepcidinas/metabolismo , Sobrecarga de Hierro/mortalidad , Sobrecarga de Hierro/patología , Hierro de la Dieta/farmacología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/genética , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bazo/metabolismo , Bazo/patología , Regulación hacia Arriba/efectos de los fármacos
20.
Mol Cell ; 55(1): 123-37, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24910095

RESUMEN

NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.


Asunto(s)
Replicación del ADN , Coactivadores de Receptor Nuclear/fisiología , Origen de Réplica , Animales , Células Cultivadas , Senescencia Celular , Células HeLa , Humanos , Ratones , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Técnicas del Sistema de Dos Híbridos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...