Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(6): 2991-2999, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38312069

RESUMEN

BACKGROUND: Fusarium species are responsible for Fusarium head blight (FHB) in wheat, resulting in yield losses and mycotoxin contamination. Deoxynivalenol (DON) and enniatins (ENNs) are common mycotoxins produced by Fusarium, affecting plant, animal and human health. Although DON's effects have been widely studied, limited research has explored the impact of ENNs on insects. This study examines the influence of DON and enniatin B (ENB), both singularly and in combination, on the wheat aphid Sitobion avenae and one of its predators, the lacewing Chrysoperla carnea. RESULTS: When exposed to DON (100 mg L-1) or DON + ENB (100 mg L-1), S. avenae exhibited significantly increased mortality compared to the negative control. ENB (100 mg L-1) had no significant effect on aphid mortality. DON-treated aphids showed increasing mortality from 48 to 96 h. A dose-response relationship with DON revealed significant cumulative mortality starting at 25 mg L-1. By contrast, C. carnea larvae exposed to mycotoxins via cuticular application did not show significant differences in mortality when mycotoxins were dissolved in water but exhibited increased mortality with acetone-solubilized DON + ENB (100 mg L-1). Feeding C. carnea with aphids exposed to mycotoxins (indirect exposure) did not impact their survival or predatory activity. Additionally, the impact of mycotoxins on C. carnea was observed only with acetone-solubilized DON + ENB. CONCLUSIONS: These findings shed light on the complex interactions involving mycotoxins, aphids and their predators, offering valuable insights for integrated pest management strategies. Further research should explore broader ecological consequences of mycotoxin contamination in agroecosystems. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Depsipéptidos , Tricotecenos , Animales , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Tricotecenos/toxicidad , Depsipéptidos/farmacología , Conducta Predatoria/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Triticum , Insectos/efectos de los fármacos , Cadena Alimentaria , Fusarium/efectos de los fármacos
2.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37707657

RESUMEN

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Asunto(s)
Dipeptidil Peptidasa 4 , Semen , Perros , Masculino , Animales , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometría de Flujo/veterinaria
3.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119554, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37524263

RESUMEN

Hydroquinone, a potent toxic agent of cigarette smoke, damages retinal pigmented epithelial cells by triggering oxidative stress and mitochondrial dysfunction, two events causally related to the development and progression of retinal diseases. The inner mitochondrial membrane is enriched in cardiolipin, a phospholipid susceptible of oxidative modifications which determine cell-fate decision. Using ARPE-19 cell line as a model of retinal pigmented epithelium, we analyzed the potential involvement of cardiolipin in hydroquinone toxicity. Hydroquinone exposure caused an early concentration-dependent increase in mitochondrial reactive oxygen species, decrease in mitochondrial membrane potential, and rise in the rate of oxygen consumption not accompanied by changes in ATP levels. Despite mitochondrial impairment, cell viability was preserved. Hydroquinone induced cardiolipin translocation to the outer mitochondrial membrane, and an increase in the colocalization of the autophagosome adapter protein LC3 with mitochondria, indicating the induction of protective mitophagy. A prolonged hydroquinone treatment induced pyroptotic cell death by cardiolipin-mediated caspase-1 and gasdermin-D activation. Cardiolipin-specific antioxidants counteracted hydroquinone effects pointing out that cardiolipin can act as a mitochondrial "eat-me signal" or as a pyroptotic cell death trigger. Our results indicate that cardiolipin may act as a timer for the mitophagy to pyroptosis switch and propose cardiolipin-targeting compounds as promising approaches for the treatment of oxidative stress-related retinal diseases.


Asunto(s)
Cardiolipinas , Enfermedades de la Retina , Humanos , Cardiolipinas/metabolismo , Hidroquinonas/toxicidad , Hidroquinonas/metabolismo , Células Epiteliales/metabolismo , Enfermedades de la Retina/metabolismo
4.
Toxins (Basel) ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104209

RESUMEN

Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.


Asunto(s)
Fusarium , Micotoxinas , Animales , Humanos , Contaminación de Alimentos/análisis , Micotoxinas/toxicidad , Micotoxinas/análisis , Insectos , Grano Comestible/química
5.
Antioxidants (Basel) ; 12(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979026

RESUMEN

Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.

6.
Cells ; 12(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831194

RESUMEN

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Fenotipo , Transporte Biológico
7.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768851

RESUMEN

In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.


Asunto(s)
Vesículas Extracelulares , Microbiota , Humanos , Femenino , Embarazo , Monocitos/metabolismo , Inflamasomas/metabolismo , Líquido Amniótico , Proteómica , Vesículas Extracelulares/metabolismo , Endotoxinas/metabolismo
8.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36647689

RESUMEN

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Asunto(s)
Atrofia Girata , Degeneración Retiniana , Animales , Ratones , Atrofia Girata/genética , Atrofia Girata/patología , Ornitina-Oxo-Ácido Transaminasa/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Ornitina/genética , Ornitina/metabolismo , Terapia Genética , Hígado/patología
9.
Eur J Med Chem ; 243: 114746, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36099749

RESUMEN

In our overall goal to develop anti-Parkinson drugs, we designed novel diketopiperazines (DKP1-6) aiming to both reach the blood-brain barrier and counteract the oxidative stress related to Parkinson's Disease (PD). The anti-Parkinson properties of DKP 1-6 were evaluated using neurotoxin-treated PC12 cells, as in vitro model of PD, while their cytotoxicity and genotoxicity potentials were investigated in newborn rat cerebral cortex (RCC) and primary human whole blood (PHWB) cell cultures. The response against free radicals was evaluated by the total antioxidant capacity (TAC) assay. Comet assay was used to detect DNA damage while the content of 8-hydroxyl-2'-deoxyguanosine (8-OH-dG) was determined as a marker of oxidative DNA damage. PAMPA-BBB and Caco-2 assays were employed to evaluate the capability of DKP1-6 to cross the membranes. Stability studies were conducted in simulated gastric and intestinal fluids and human plasma. Results showed that DKP5-6 attenuate the MPP + -induced cell death on a nanomolar scale, but a remarkable effect was observed for DKP6 on Nrf2 activation that leads to the expression of genes involved in oxidative stress response thus increasing glutathione biosynthesis and ROS buffering. DKP5-6 resulted in no toxicity for RCC neurons and PHWB cells exposed to 10-500 nM concentrations during 24 h as determined by MTT and LDH assays and TAC levels were not altered in both cultured cell types. No significant difference in the induction of DNA damage was observed for DKP5-6. Both DKPs resulted stable in simulated gastric fluids (t1/2 > 22h). In simulated intestinal fluids, DKP5 underwent immediate hydrolysis while DKP6 showed a half-life higher than 3 h. In human plasma, DKP6 resulted quite stable. DKP6 displayed both high BBB and Caco-2 permeability confirming that the DKP scaffold represents a useful tool to improve the crossing of drugs through the biological membranes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de Parkinson , Animales , Ratas , Humanos , Levodopa/farmacología , Levodopa/metabolismo , Levodopa/uso terapéutico , Barrera Hematoencefálica/metabolismo , Dicetopiperazinas/farmacología , Dicetopiperazinas/metabolismo , Células CACO-2 , Carcinoma de Células Renales/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico
10.
Biochimie ; 202: 110-122, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964771

RESUMEN

AGXT1 encodes alanine:glyoxylate aminotransferase 1 (AGT1), a liver peroxisomal pyridoxal 5'-phosphate dependent-enzyme whose deficit causes Primary Hyperoxaluria Type 1 (PH1). PH1 is a rare disease characterized by overproduction of oxalate, first leading to kidney stones formation, and possibly evolving to life-threatening systemic oxalosis. A minority of PH1 patients is responsive to pyridoxine, while the option for non-responders is liver-kidney transplantation. Therefore, huge efforts are currently focused on the identification of new therapies, including the promising approaches based on RNA silencing recently approved. Many PH1-associated mutations are missense and lead to a variety of kinetic and/or folding defects on AGT1. In this context, the availability of a reliable in vitro disease model would be essential to better understand the phenotype of known or newly-identified pathogenic variants as well as to test novel drug candidates. Here, we took advantage of the CRISPR/Cas9 technology to specifically knock-out AGXT1 in HepG2 cells, a hepatoma-derived cell model exhibiting a conserved glyoxylate metabolism. AGXT1-KO HepG2 displayed null AGT1 expression and significantly reduced transaminase activity leading to an enhanced secretion of oxalate upon glycolate challenge. Known pathogenic AGT1 variants expressed in AGXT1-KO HepG2 cells showed alteration in both protein levels and specific transaminase activity, as well as a partial mitochondrial mistargeting when associated with a common polymorphism. Notably, pyridoxine treatment was able to partially rescue activity and localization of clinically-responsive variants. Overall, our data validate AGXT1-KO HepG2 cells as a novel cellular model to investigate PH1 pathophysiology, and as a platform for drug discovery and development.


Asunto(s)
Sistemas CRISPR-Cas , Piridoxina , Humanos , Células Hep G2 , Piridoxina/farmacología , Transaminasas/genética , Oxalatos , Fosfato de Piridoxal
11.
Front Oncol ; 12: 888135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530309

RESUMEN

Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1ß (IL-1ß) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1ß production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1ß production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.

12.
FASEB J ; 36(4): e22218, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218567

RESUMEN

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Asunto(s)
Líquido Amniótico/citología , Antiinflamatorios/farmacología , Vesículas Extracelulares/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamación/prevención & control , Monocitos/citología , Células Madre/citología , Adenosina/metabolismo , Líquido Amniótico/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Células Madre/metabolismo , Células THP-1
13.
Toxins (Basel) ; 13(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679021

RESUMEN

Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)-a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg-1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg-1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.


Asunto(s)
Depsipéptidos/toxicidad , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Tricotecenos/toxicidad , Triticum/efectos de los fármacos , Clorofila/análisis , Fusarium/crecimiento & desarrollo , Germinación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
14.
Biomolecules ; 11(6)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070682

RESUMEN

Inflammation, by inducing a tumor-promoting microenvironment, is a hallmark for prostate cancer (PCa) progression. NOD-like receptor protein 3 (NLRP3)-inflammasome activation, interleukin-1ß (IL-1ß) secretion, and cancer cell-released extracellular vesicles (EVs) contribute to the establishment of tumor microenvironment. We have shown that PC3-derived EVs (PC3-EVs) activate inflammasome cascade in non-cancerous PNT2 cells. It is known that the endogenous biomolecules and Natriuretic Peptides (NPs), such as ANP and BNP, inhibit inflammasome activation in immune cells. Here we investigated whether ANP and BNP modify PCa inflammatory phenotype in vitro. By using PNT2, LNCaP, and PC3 cell lines, which model different PCa progression stages, we analyzed inflammasome activation and the related pathways by Western blot and IL-1ß secretion by ELISA. We found that tumor progression is characterized by constitutive inflammasome activation, increased IL-1ß secretion, and reduced endogenous NPs expression. The administration of exogenous ANP and BNP, via p38-MAPK or ERK1/2-MAPK, by inducing NLRP3 phosphorylation, counteract inflammasome activation and IL-1ß maturation in PC3 and PC3-EVs-treated PNT2 cells, respectively. Our results demonstrate that NPs, by interfering with cell-specific signaling pathways, exert pleiotropic anti-inflammatory effects converging toward inflammasome phosphorylation and suggest that NPs can be included in a drug repurposing process for PCa.


Asunto(s)
Antineoplásicos/farmacología , Factor Natriurético Atrial/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Péptido Natriurético Encefálico/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata , Línea Celular Tumoral , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
15.
Front Biosci (Landmark Ed) ; 26(12): 1627-1642, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34994177

RESUMEN

Cells have evolved sophisticated molecular control systems to maximize the efficiency of the folding process. However, any subtle alteration of the environment or the protein can lead to misfolding or affect the conformational plasticity of the native states. It has been widely demonstrated that misfolding and/or conformational instability are the underlying mechanisms of several rare disorders caused by enzymatic deficits. In fact, disease-causing mutations often lead to the substitution of amino acids that are crucial for the achievement of a folded conformation, or play a role on the equilibrium between native-state conformers. One of the promising approaches to treat conformational disorders is the use of pharmacological chaperones (PCs), small molecules that specifically bind a target protein and stabilize a functional fold, thus increasing the amount of functionally active enzyme. Molecules acting as PCs are usually coenzymes, substrate analogues behaving as competitive inhibitors, or allosteric modulators. In this review, the general features of PCs are described, along with three examples of diseases (Gaucher disease, Phenylketonuria, and Primary Hyperoxaluria) in which this approach is currently under study at preclinical and/or clinical level.


Asunto(s)
Enfermedad de Gaucher , Deficiencias en la Proteostasis , Aminoácidos , Humanos , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/genética
16.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140555, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068755

RESUMEN

Gyrate Atrophy (GA) of the choroid and retina (MIM# 258870) is an autosomal recessive disorder due to mutations of the OAT gene encoding ornithine-delta-aminotransferase (OAT), associated with progressive retinal deterioration and blindness. The disease has a theoretical global incidence of approximately 1:1,500,000. OAT is mainly involved in ornithine catabolism in adults, thus explaining the hyperornithinemia as hallmark of the disease. Patients are treated with an arginine-restricted diet, to limit ornithine load, or the administration of Vitamin B6, a precursor of the OAT coenzyme pyridoxal phosphate. Although the clinical and genetic aspects of GA are known for many years, the enzymatic phenotype of pathogenic variants and their response to Vitamin B6, as well as the molecular mechanisms explaining retinal damage, are poorly clarified. Herein, we provide an overview of the current knowledge on the biochemical properties of human OAT and on the molecular, cellular, and clinical aspects of GA.


Asunto(s)
Coenzimas/administración & dosificación , Atrofia Girata/dietoterapia , Atrofia Girata/enzimología , Ornitina-Oxo-Ácido Transaminasa/deficiencia , Fosfato de Piridoxal/administración & dosificación , Vitamina B 6/administración & dosificación , Arginina/metabolismo , Coroides/enzimología , Coroides/patología , Cromosomas Humanos Par 10 , Dieta/métodos , Expresión Génica , Atrofia Girata/genética , Atrofia Girata/patología , Humanos , Modelos Moleculares , Mutación , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Retina/enzimología , Retina/patología
17.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375031

RESUMEN

Dysregulated inflammasome activation and interleukin (IL)-1ß production are associated with several inflammatory disorders. Three different routes can lead to inflammasome activation: a canonical two-step, a non-canonical Caspase-4/5- and Gasdermin D-dependent, and an alternative Caspase-8-mediated pathway. Natriuretic Peptides (NPs), Atrial Natriuretic Peptide (ANP) and B-type Natriuretic Peptide (BNP), binding to Natriuretic Peptide Receptor-1 (NPR-1), signal by increasing cGMP (cyclic guanosine monophosphate) levels that, in turn, stimulate cGMP-dependent protein kinase-I (PKG-I). We previously demonstrated that, by counteracting inflammasome activation, NPs inhibit IL-1ß secretion. Here we aimed to decipher the molecular mechanism underlying NPs effects on THP-1 cells stimulated with lipopolysaccharide (LPS) + ATP. Involvement of cGMP and PKG-I were assessed pre-treating THP-1 cells with the membrane-permeable analogue, 8-Br-cGMP, and the specific inhibitor KT-5823, respectively. We found that NPs, by activating NPR-1/cGMP/PKG-I axis, lead to phosphorylation of NLRP3 at Ser295 and to inflammasome platform disassembly. Moreover, by increasing intracellular cGMP levels and activating phosphodiesterases, NPs interfere with both Gasdermin D and Caspase-8 cleavage, indicating that they disturb non-canonical and alternative routes of inflammasome activation. These results showed that ANP and BNP anti-inflammatory and immunomodulatory actions may involve the inhibition of all the known routes of inflammasome activation. Thus, NPs might be proposed for the treatment of the plethora of diseases caused by a dysregulated inflammasome activation.


Asunto(s)
Factor Natriurético Atrial/metabolismo , GMP Cíclico/metabolismo , Inflamasomas/metabolismo , Péptido Natriurético Encefálico/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Adenosina Trifosfato/farmacología , Caspasa 8/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1
18.
Genes (Basel) ; 11(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322720

RESUMEN

Prostate-derived extracellular vesicles (pEVs) may represent a way to selectively transport cargo molecules from the producing cells to the target cells to allow biological events, both in physiological and pathological circumstances. pEVs cargo participates in the modulation of the inflammatory responses in physiological conditions and during cancer progression. In the present study, we examined the expression levels of miRNA Let-7b, in both precursor and mature forms, in noncancerous and cancerous prostate cell lines, PNT2 and PC3 respectively, and in their extracellular vesicles (EVs) using reverse-transcription quantitative PCR strategies. We showed that miRNA Let-7b was highly expressed in noncancerous cells and strongly decreased in cancerous PC3 cells, while the opposite was observed in the respective EVs, thus supporting the tumor suppressor role of miRNA Let7-b. We also demonstrated that miRNA Let-7b can be transferred to THP-1 cells via EVs, which are known to induce TAM-like polarization. Our results support the view that miRNA Let-7 b, contained in PC3-derived EVs, is associated with the increase in the miRNA Let7-b observed in TAM-like macrophages. Overall, our results indicate that circulating EV-loaded miRNA might be useful biomarkers for prostate cancer progression and might also support a possible use of pEVs as targets for prostate cancer therapy.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , ARN Neoplásico/metabolismo , Vesículas Extracelulares/patología , Humanos , Macrófagos/patología , Masculino , Células PC-3 , Neoplasias de la Próstata/patología , Células THP-1
19.
Molecules ; 25(11)2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517272

RESUMEN

Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.


Asunto(s)
Amidinas/química , Amidinas/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Prolina/análogos & derivados , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Microglía/metabolismo , Microglía/patología , Prolina/farmacología , Transducción de Señal
20.
Cell Mol Life Sci ; 77(18): 3547-3565, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32072237

RESUMEN

Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine ß-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.


Asunto(s)
Células Musculares/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Autofagia , Glutatión/metabolismo , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA