Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609662

RESUMEN

Microtubule (MT) filaments, composed of α/ß-tubulin dimers, are fundamental to cellular architecture, function and organismal development. They are nucleated from MT organizing centers by the evolutionarily conserved γ-tubulin ring complex (γTuRC). However, the molecular mechanism of nucleation remains elusive. Here we used cryo-electron tomography to determine the structure of the native γTuRC capping the minus end of a MT in the context of enriched budding yeast spindles. In our structure, γTuRC presents a ring of γ-tubulin subunits to seed nucleation of exclusively 13-protofilament MTs, adopting an active closed conformation to function as a perfect geometric template for MT nucleation. Our cryo-electron tomography reconstruction revealed that a coiled-coil protein staples the first row of α/ß-tubulin of the MT to alternating positions along the γ-tubulin ring of γTuRC. This positioning of α/ß-tubulin onto γTuRC suggests a role for the coiled-coil protein in augmenting γTuRC-mediated MT nucleation. Based on our results, we describe a molecular model for budding yeast γTuRC activation and MT nucleation.

2.
Nat Microbiol ; 9(3): 698-711, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443575

RESUMEN

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.


Asunto(s)
Haloferax volcanii , Proteínas del Complejo del Centro de Reacción Fotosintética , División Celular , Citoesqueleto , Haloferax volcanii/genética , Microscopía Fluorescente
3.
Nat Struct Mol Biol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459127

RESUMEN

Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C. Here, we determined a high-resolution cryo-EM structure of the human KMN network. This showed an intricate and extensive assembly of KMN subunits, with the central MIS12C forming rigid interfaces with NDC80C and KNL1C, augmented by multiple peptidic inter-subunit connections. We also observed that unphosphorylated MIS12C exists in an auto-inhibited state that suppresses its capacity to interact with CCAN. Ser100 and Ser109 of the N-terminal segment of the MIS12C subunit Dsn1, two key targets of Aurora B kinase, directly stabilize this auto-inhibition. Our study indicates how selectively relieving this auto-inhibition through Ser100 and Ser109 phosphorylation might restrict outer kinetochore assembly to functional centromeres during cell division.

4.
Nature ; 625(7995): 603-610, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200312

RESUMEN

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Escherichia coli , Código Genético , ARN de Transferencia , Acilación , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Código Genético/genética , Hidroxiácidos/química , Hidroxiácidos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Ribosomas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Mol Cell ; 83(24): 4461-4478.e13, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38029752

RESUMEN

Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estudio de Asociación del Genoma Completo , Transcripción Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Procesamiento de Término de ARN 3'/genética
6.
Nature ; 618(7963): 159-168, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225977

RESUMEN

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Asunto(s)
Regeneración Nerviosa , Humanos , Neoplasias/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Isoformas de Proteínas/agonistas , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/efectos de los fármacos , Cardiotónicos/farmacología , Animales , Biocatálisis/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Neuritas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Compresión Nerviosa , Proliferación Celular/efectos de los fármacos
7.
Nat Commun ; 13(1): 3398, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697693

RESUMEN

The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Eucariontes , Archaea/genética , Archaea/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Ubiquitina/genética
8.
J Appl Crystallogr ; 55(Pt 2): 310-319, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35497656

RESUMEN

The success and speed of atomic structure determination of biological macromolecules by X-ray crystallography depends critically on the availability of diffraction-quality crystals. However, the process of screening crystallization conditions often consumes large amounts of sample and time. An innovative protein crystallization screen formulation called FUSION has been developed to help with the production of useful crystals. The concept behind the formulation of FUSION was to combine the most efficient components from the three MORPHEUS screens into a single screen using a systematic approach. The resulting formulation integrates 96 unique combinations of crystallization additives. Most of these additives are small molecules and ions frequently found in crystal structures of the Protein Data Bank (PDB), where they bind proteins and complexes. The efficiency of FUSION is demonstrated by obtaining high yields of diffraction-quality crystals for seven different test proteins. In the process, two crystal forms not currently in the PDB for the proteins α-amylase and avidin were discovered.

9.
J Appl Crystallogr ; 55(Pt 2): 370-379, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35497658

RESUMEN

In X-ray macromolecular crystallography, cryoprotection of crystals mounted on harvesting loops is achieved when the water in the sample solvent transitions to vitreous ice before crystalline ice forms. This is achieved by rapid cooling in liquid nitro-gen or propane. Protocols for protein crystal cryoprotection are based on either increasing the environmental pressure or reducing the water fraction in the solvent. This study presents a new protocol for cryoprotecting crystals. It is based on vapour diffusion dehydration of the crystal drop to reduce the water fraction in the solvent by adding a highly concentrated salt solution, 13 M potassium formate (KF13), directly to the reservoir. Several salt solutions were screened to identify KF13 as optimal. Cryoprotection using the KF13 protocol is non-invasive to the crystal, high throughput and easy to implement, can benefit diffraction resolution and ligand binding, and is very useful in cases with high redundancy such as drug-discovery projects which use very large compound or fragment libraries. An application of KF13 to discover new crystal hits from clear drops of equilibrated crystallization screening plates is also shown.

10.
Science ; 376(6595): 844-852, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35420891

RESUMEN

Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.


Asunto(s)
Proteína A Centromérica , Cinetocoros , Nucleosomas , Centrómero/química , Proteína A Centromérica/química , Microscopía por Crioelectrón , ADN/química , Humanos , Cinetocoros/química , Nucleosomas/química , Unión Proteica
11.
Biochem J ; 478(19): 3655-3670, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34529035

RESUMEN

Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness - which is limited to the parasite's adult form - and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. Fourteen of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.


Asunto(s)
Descubrimiento de Drogas/métodos , Purina-Nucleósido Fosforilasa/química , Purina-Nucleósido Fosforilasa/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Schistosoma mansoni/enzimología , Tiazoles/metabolismo , Animales , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Dimetilsulfóxido/farmacología , Evaluación Preclínica de Medicamentos/métodos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Purina-Nucleósido Fosforilasa/genética , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
12.
J Med Chem ; 64(15): 11379-11394, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34337941

RESUMEN

The effectiveness of ß-lactam antibiotics is increasingly compromised by ß-lactamases. Boron-containing inhibitors are potent serine-ß-lactamase inhibitors, but the interactions of boron-based compounds with the penicillin-binding protein (PBP) ß-lactam targets have not been extensively studied. We used high-throughput X-ray crystallography to explore reactions of a boron-containing fragment set with the Pseudomonas aeruginosa PBP3 (PaPBP3). Multiple crystal structures reveal that boronic acids react with PBPs to give tricovalently linked complexes bonded to Ser294, Ser349, and Lys484 of PaPBP3; benzoxaboroles react with PaPBP3 via reaction with two nucleophilic serines (Ser294 and Ser349) to give dicovalently linked complexes; and vaborbactam reacts to give a monocovalently linked complex. Modifications of the benzoxaborole scaffold resulted in a moderately potent inhibition of PaPBP3, though no antibacterial activity was observed. Overall, the results further evidence the potential for the development of new classes of boron-based antibiotics, which are not compromised by ß-lactamase-driven resistance.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Boro/farmacología , Ensayos Analíticos de Alto Rendimiento , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Sitios de Unión/efectos de los fármacos , Compuestos de Boro/síntesis química , Compuestos de Boro/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Proteínas de Unión a las Penicilinas/metabolismo , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas
13.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34013668

RESUMEN

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Asunto(s)
Proteínas de Ciclo Celular , Cinetocoros , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosforilación , Transducción de Señal , Huso Acromático/metabolismo
14.
Nucleic Acids Res ; 48(19): 11172-11184, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32976599

RESUMEN

Kinetochores are large multi-subunit complexes that attach centromeric chromatin to microtubules of the mitotic spindle, enabling sister chromatid segregation in mitosis. The inner kinetochore constitutive centromere associated network (CCAN) complex assembles onto the centromere-specific Cenp-A nucleosome (Cenp-ANuc), thereby coupling the centromere to the microtubule-binding outer kinetochore. CCAN is a conserved 14-16 subunit complex composed of discrete modules. Here, we determined the crystal structure of the Saccharomyces cerevisiae Cenp-HIKHead-TW sub-module, revealing how Cenp-HIK and Cenp-TW interact at the conserved Cenp-HIKHead-Cenp-TW interface. A major interface is formed by the C-terminal anti-parallel α-helices of the histone fold extension (HFE) of the Cenp-T histone fold domain (HFD) combining with α-helix H3 of Cenp-K to create a compact three α-helical bundle. We fitted the Cenp-HIKHead-TW sub-module to the previously determined cryo-EM map of the S. cerevisiae CCAN-Cenp-ANuc complex. This showed that the HEAT repeat domain of Cenp-IHead and C-terminal HFD of Cenp-T of the Cenp-HIKHead-TW sub-module interact with the nucleosome DNA gyre at a site close to the Cenp-ANuc dyad axis. Our structure provides a framework for understanding how Cenp-T links centromeric Cenp-ANuc to the outer kinetochore through its HFD and N-terminal Ndc80-binding motif, respectively.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Cinetocoros , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Proteínas de Unión al ADN/química , Cinetocoros/química , Nucleosomas , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Huso Acromático
15.
Chem Sci ; 11(39): 10792-10801, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34094333

RESUMEN

Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10-14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.

16.
J Med Chem ; 62(21): 9703-9717, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31626547

RESUMEN

Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Sondas Moleculares/química , Serina-ARNt Ligasa/antagonistas & inhibidores , Staphylococcus aureus/enzimología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Estructura Molecular , Serina-ARNt Ligasa/química
17.
J Mol Biol ; 431(18): 3501-3519, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31301409

RESUMEN

Even with the emergence of antibiotic resistance, penicillin and the wider family of ß-lactams have remained the single most important family of antibiotics. The periplasmic/extra-cytoplasmic targets of penicillin are a family of enzymes with a highly conserved catalytic activity involved in the final stage of bacterial cell wall (peptidoglycan) biosynthesis. Named after their ability to bind penicillin, rather than their catalytic activity, these key targets are called penicillin-binding proteins (PBPs). Resistance is predominantly mediated by reducing the target drug concentration via ß-lactamases; however, naturally transformable bacteria have also acquired target-mediated resistance by inter-species recombination. Here we focus on structural based interpretations of amino acid alterations associated with the emergence of resistance within clinical isolates and include new PBP3 structures along with new, and improved, PBP-ß-lactam co-structures.


Asunto(s)
Proteínas de Unión a las Penicilinas/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Resistencia betalactámica/fisiología , beta-Lactamas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimología , Modelos Moleculares , Mutación , Neisseria gonorrhoeae/enzimología , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Conformación Proteica , Dominios Proteicos , Pseudomonas aeruginosa/enzimología , Alineación de Secuencia , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
18.
FEBS J ; 286(21): 4261-4277, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31243889

RESUMEN

Bacteriophytochrome proteins (BphPs) are molecular light switches that enable organisms to adapt to changing light conditions through the control of gene expression. Canonical type 1 BphPs have histidine kinase output domains, but type 3 RpBphP1, in the bacterium Rhodopseudomonas palustris (Rps. palustris), has a C terminal PAS9 domain and a two-helix output sensor (HOS) domain. Type 1 BphPs form head-to-head parallel dimers; however, the crystal structure of RpBphP1ΔHOS, which does not contain the HOS domain, revealed pseudo anti-parallel dimers. HOS domains are homologs of Dhp dimerization domains in type 1 BphPs. We show, by applying the small angle X-ray scattering (SAXS) technique on full-length RpBphP1, that HOS domains fulfill a similar role in the formation of parallel dimers. On illumination with far-red light, RpBphP1 forms a complex with gene repressor RpPpsR2 through light-induced structural changes in its HOS domains. An RpBphP1:RpPpsR2 complex is formed in the molecular ratio of 2 : 1 such that one RpBphP1 dimer binds one RpPpsR2 monomer. Molecular dimers have been modeled with Pfr and Pr SAXS data, suggesting that, in the Pfr state, stable dimeric four α-helix bundles are formed between HOS domains, rendering RpBphP1functionally inert. On illumination with light of 760 nm wavelength, four α-helix bundles formed by HOS dimers are disrupted, rendering helices available for binding with RpPpsR2.


Asunto(s)
Proteínas Bacterianas/química , Fitocromo/química , Rhodopseudomonas/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Dimerización , Regulación Bacteriana de la Expresión Génica/genética , Luz , Fitocromo/genética , Fitocromo/efectos de la radiación , Rhodopseudomonas/efectos de la radiación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
19.
J Am Chem Soc ; 141(22): 8951-8968, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060360

RESUMEN

Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Electrones , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Peso Molecular , Conformación Proteica , Factores de Tiempo
20.
J Struct Biol ; 206(2): 233-242, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30928616

RESUMEN

The AvrRpt2 protein of the phytopathogenic bacterium Erwinia amylovora (AvrRpt2EA) is a secreted type III effector protein, which is recognised by the FB_MR5 resistance protein of Malus × robusta 5, the only identified resistance protein from a Malus species preventing E. amylovora infection. The crystal structure of the immature catalytic domain of AvrRpt2EA, a C70 family cysteine protease and type III effector, was determined to a resolution of 1.85 Å. The structure provides insights into the cyclophilin-dependent activation of AvrRpt2, and identifies a cryptic leucine of a non-canonical cyclophilin binding motif. The structure also suggests that residue Cys156, responsible for the gene induced resistance, is not involved in substrate determination, and hints that recognition by FB_MR5 is due to direct interaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Erwinia amylovora/metabolismo , Malus/microbiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Erwinia amylovora/enzimología , Interacciones Huésped-Patógeno , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA