RESUMEN
Recruitment of mural cells (MCs), namely pericytes and smooth muscle cells (SMCs), is essential to improve the maturation of newly formed vessels. Sonic hedgehog (Shh) has been suggested to promote the formation of larger and more muscularized vessels, but the underlying mechanisms of this process have not yet been elucidated. We first identified Shh as a target of platelet-derived growth factor BB (PDGF-BB) and found that SMCs respond to Shh by upregulating extracellular signal-regulated kinase 1/2 and Akt phosphorylation. We next showed that PDGF-BB-induced SMC migration was reduced after inhibition of Shh or its signaling pathway. Moreover, we found that PDGF-BB-induced SMC migration involves Shh-mediated motility. In vivo, in the mouse model of corneal angiogenesis, Shh is expressed by MCs of newly formed blood vessels. PDGF-BB inhibition reduced Shh expression, demonstrating that Shh is a target of PDGF-BB, confirming in vitro experiments. Finally, we found that in vivo inhibition of either PDGF-BB or Shh signaling reduces NG2(+) MC recruitment into neovessels and subsequently reduces neovessel life span. Our findings demonstrate, for the first time, that Shh is involved in PDGF-BB-induced SMC migration and recruitment of MCs into neovessels and elucidate the molecular signaling pathway involved in this process.
Asunto(s)
Movimiento Celular/fisiología , Proteínas Hedgehog/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Transducción de Señal/fisiología , Animales , Becaplermina , Western Blotting , Córnea/irrigación sanguínea , Inmunohistoquímica , Ratones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Pericitos/citología , Pericitos/metabolismo , ARN Interferente Pequeño , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , TransfecciónRESUMEN
OBJECTIVE: The purpose of this study is to further document alteration of signal transduction pathways, more particularly of hedgehog (Hh) signaling, causing impaired ischemic muscle repair in old mice. APPROACH AND RESULTS: We used 12-week-old (young mice) and 20- to 24-month-old C57BL/6 mice (old mice) to investigate the activity of Hh signaling in the setting of hindlimb ischemia-induced angiogenesis and skeletal muscle repair. In this model, delayed ischemic muscle repair observed in old mice was associated with an impaired upregulation of Gli1. Sonic Hh expression was not different in old mice compared with young mice, whereas desert Hh (Dhh) expression was downregulated in the skeletal muscle of old mice both in healthy and ischemic conditions. The rescue of Dhh expression by gene therapy in old mice promoted ischemia-induced angiogenesis and increased nerve density; nevertheless, it failed to promote myogenesis or to increase Gli1 mRNA expression. After further investigation, we found that, in addition to Dhh, smoothened expression was significantly downregulated in old mice. We used smoothened haploinsufficient mice to demonstrate that smoothened knockdown by 50% is sufficient to impair activation of Hh signaling and ischemia-induced muscle repair. CONCLUSIONS: The present study demonstrates that Hh signaling is impaired in aged mice because of Dhh and smoothened downregulation. Moreover, it shows that hegdehog-dependent regulation of angiogenesis and myogenesis involves distinct mechanisms.
Asunto(s)
Envejecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Isquemia/metabolismo , Desarrollo de Músculos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Factores de Edad , Envejecimiento/genética , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Proteínas Hedgehog/genética , Miembro Posterior , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Isquemia/genética , Isquemia/patología , Isquemia/fisiopatología , Isquemia/terapia , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/inervación , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneración , Transducción de Señal , Receptor Smoothened , Transfección , Proteína con Dedos de Zinc GLI1RESUMEN
RATIONALE: A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. OBJECTIVE: The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the cross-talk between angiogenesis and myogenesis in adults. METHODS AND RESULTS: Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-Cre(ERT2); Gli3(Flox/Flox) mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle-associated transcription factor E2F1. CONCLUSIONS: This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair-associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine.
Asunto(s)
Isquemia/fisiopatología , Factores de Transcripción de Tipo Kruppel/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Neovascularización Fisiológica/fisiología , Proteínas del Tejido Nervioso/fisiología , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Factor de Transcripción E2F1/fisiología , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Proteínas Hedgehog/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Transducción de Señal/fisiología , Proteína Gli3 con Dedos de ZincRESUMEN
RATIONALE: Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. OBJECTIVE: The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. METHODS AND RESULTS: We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. CONCLUSIONS: This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.
Asunto(s)
Proteínas Hedgehog/fisiología , Miembro Posterior/irrigación sanguínea , Isquemia/fisiopatología , Neovascularización Fisiológica/fisiología , Nervios Periféricos/fisiología , Angiopoyetina 1/metabolismo , Animales , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desnervación Muscular , Músculo Esquelético/inervación , Factores de Crecimiento Nervioso/metabolismo , Nervios Periféricos/citología , Células de Schwann/citología , Células de Schwann/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
BACKGROUND: Inflammatory processes play a critical role in myocarditis, dilated cardiomyopathy, and heart failure. The expression of the inflammatory chemokine osteopontin (OPN) is dramatically increased in cardiomyocytes and inflammatory cells during myocarditis and heart failure in human and animals. However, its role in the development of heart diseases is not known. METHODS AND RESULTS: To understand whether OPN is involved in cardiomyopathies, we generated a transgenic mouse (MHC-OPN) that specifically overexpresses OPN in cardiomyocytes with cardiac-specific promoter-directed OPN expression. Young MHC-OPN mice were phenotypically indistinguishable from their control littermates, but most of them died prematurely with a half-life of 12 weeks of age. Electrocardiography revealed conduction defects. Echocardiography showed left ventricular dilation and systolic dysfunction. Histological analysis revealed cardiomyocyte loss, severe fibrosis, and inflammatory cell infiltration. Most of these inflammatory cells were activated T cells with Th1 polarization and cytotoxic activity. Autoantibodies against OPN, cardiac myosin, or troponin I, were not found in the serum of MHC-OPN mice. CONCLUSIONS: These data show that OPN expression in the heart induces in vivo T-cell recruitment and activation leading to chronic myocarditis, the consequence of which is myocyte destruction and hence, dilated cardiomyopathy. Thus, OPN might therefore constitute a potential therapeutic target to limit heart failure.
Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Osteopontina/metabolismo , Animales , Cardiomiopatía Dilatada/etiología , Modelos Animales de Enfermedad , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/etiología , Activación de Linfocitos , Ratones , Ratones Transgénicos , Miocarditis/etiología , Miocarditis/metabolismo , Miocarditis/patología , Infiltración NeutrófilaRESUMEN
OBJECTIVE: Migration of smooth muscle cells (SMCs) from the media to the intima of arteries is involved in intimal thickening. The platelet-derived growth factor (PDGF) BB is recognized as a major migratory factor for arterial SMCs both in vitro and during neointima formation. Since PDGF acts in synergy with the matrix protein osteopontin (OPN) and also induces its expression, the present study was conceived to explore the role of the OPN produced in an autocrine fashion by PDGF-stimulated SMCs in the migration process and to define regulatory mechanisms of OPN expression. METHODS AND RESULTS: PDGF stimulation of quiescent rat aortic SMCs induced their migration (transfilter assays) and the increase of OPN expression (mRNA and protein assays). Blockade of either OPN expression by a specific short interference RNA (siRNA) or of its function by a blocking antibody decreased the PDGF-stimulated migration by about 70%, demonstrating that autocrine production and excretion of OPN are integral to the PDGF-induced SMC migration. In parallel, SMC stimulation by PDGF also activated the transcription factor CREB essentially through mitogen-activated protein kinase (MAPK) 1/2 and protein kinase A (PKA) pathways. Inhibition of either CREB expression (via siRNA) or function (via dominant-negative CREB) decreased both PDGF-induced SMC migration and OPN expression. SMC transfection with OPN promoter reporter constructs demonstrated that PDGF-induced OPN transcription is mediated by CREB binding to two functional sites of the OPN promoter: a CRE site located at -1403 and an AP-1 site located at -76. CONCLUSION: The present study demonstrates that the autocrine expression of OPN plays a major role in PDGF-induced SMC migration. It further shows that the transcription factor CREB, activated in PDGF-stimulated SMCs, plays a key role in PDGF-induced SMC migration, probably by regulating OPN expression.
Asunto(s)
Comunicación Autocrina/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Osteopontina/fisiología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Túnica Íntima/patología , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Becaplermina , Calcinosis/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/análisis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Osteopontina/análisis , Osteopontina/genética , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas c-sis , Interferencia de ARN , ARN Mensajero/análisis , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Estimulación Química , Transcripción Genética/efectos de los fármacos , Transfección/métodosRESUMEN
The transcription factor cAMP responsive element-binding protein (CREB) has been found to be involved in arterial smooth muscle cell (SMC) migration. We previously demonstrated that osteopontin (OPN) expression is a key step for UTP-mediated migration of arterial SMCs and that activator protein (AP)-1, nuclear factor kappaB, and upstream stimulatory transcription factors are involved in this OPN expression. The present study aims to determine the role of CREB in UTP-induced migration and OPN expression in cultured SMCs. We found that CREB is activated by UTP via extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways but not by protein kinase A. Both overexpression of a dominant negative CREB and CREB small interfering RNA treatment suppressed UTP-induced OPN expression and SMC migration. Gel-shift and chromatin immunoprecipitation assays revealed that CREB binds 2 AP-1 sites (-1870 and -76) and a cAMP responsive element-like site (-1403) on the OPN promoter. Mutations of these sites showed that only the 2 AP-1 sites were required for UTP-induced OPN expression. Moreover, gel-supershift and sequential chromatin immunoprecipitation assays suggested that CREB was associated with c-Fos on the AP-1 sites of the OPN promoter. These results demonstrate that CREB participates in the induction of UTP-activated OPN expression via its binding to 2 AP-1 sites and is thus involved in UTP-mediated SMC migration.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Osteopontina/genética , Factor de Transcripción AP-1/metabolismo , Uridina Trifosfato/farmacología , Movimiento Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/análisis , Elementos de RespuestaRESUMEN
Osteopontin (OPN) is an important chemokinetic agent for several cell types. Our earlier studies have shown that its expression is essential for uridine triphosphate (UTP)-mediated migration of vascular smooth muscle cells. We demonstrated previously that the activation of an AP-1 binding site located 76 bp upstream of the transcription start in the rat OPN promoter is involved in the induction of OPN expression. In this work, using a luciferase promoter deletion assay, we identified a new region of the rat OPN promoter (-1837 to -1757) that is responsive to UTP. This region contains an NFkappaB site located at -1800 and an Ebox located at -1768. Supershift electrophoretic mobility shift assay and chromatin immunoprecipitation assays identified NFkappaB and USF-1/USF-2 as the DNA binding proteins induced by UTP, respectively, for these two sites. Using dominant negative mutants of IkappaB kinase and USF transcription factors, we confirmed that NFkappaB and USF-1/USF-2 are involved in the UTP-mediated expression of OPN. Using a pharmacological approach, we demonstrated that USF proteins are regulated by the extracellular signal-regulated kinase (ERK)1/2 pathway, just as the earlier discovered AP-1 complex, whereas NFkappaB is up-regulated through PKCdelta signals. Finally, our work suggests that the UTP-stimulated OPN expression involves a coordinate regulation of PKCdelta-NFkappaB, ERK1/2-USF, and ERK1/2/NAD(P)H oxidase AP-1 signaling pathways.
Asunto(s)
Arterias/patología , Proteínas de Unión al ADN/metabolismo , Músculo Liso/citología , FN-kappa B/metabolismo , Sialoglicoproteínas/biosíntesis , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Uridina Trifosfato/metabolismo , Animales , Sitios de Unión , Western Blotting , Movimiento Celular , Células Cultivadas , ADN/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Genes Dominantes , Luciferasas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Mutación , NADPH Oxidasas/metabolismo , Osteopontina , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Ratas Wistar , Sialoglicoproteínas/genética , Transducción de Señal , Transcripción Genética , Regulación hacia Arriba , Factores Estimuladores hacia 5'RESUMEN
Many factors have been shown to be involved in the development of hyperplasic lesions of vessels, but the role of extracellular nucleotides remains largely unknown. The presence of P2Y and P2X nucleotide receptors on arterial endothelial and smooth muscle cells suggests a potential role for nucleotides in the vessel pathophysiology. Although the role of P2X in physiology of vessels is well documented, that of P2Y is not completely understood. We recently demonstrated that extracellular nucleotides, and particularly UTP, induced migration of cultured arterial smooth muscle cells (ASMCs). This migration is dependent on osteopontin expression and involves the Rho and mitogen-activated protein (MAP) kinase pathways. An important question is to determine the specific role of the different P2Y receptors of rat ASMCs in the UTP-induced migration process. Therefore, we first quantified mRNA levels of P2Y(2), P2Y(4), and P2Y(6) nucleotide receptors in cultured rat ASMCs by a competitive RT-PCR approach and demonstrated that P2Y(2) is the most highly expressed among these receptors potentially involved in the UTP-mediated response. In addition to UTP, UDP also induced ASMC migration even when UTP regeneration was inhibited, suggesting the involvement of UDP receptor P2Y(6). Moreover, suramin, a specific antagonist of rat P2Y(2) receptor, acted as an inhibitor of UTP-induced migration. Taken together, these results suggest a prominent role for the UTP receptor, P2Y(2), and for the UDP receptor, P2Y(6), in UTP-induced rat ASMC migration.