Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 631(8020): 386-392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961295

RESUMEN

Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59-1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient.


Asunto(s)
Aptitud Genética , Mapeo Geográfico , Streptococcus pneumoniae , Humanos , Aptitud Genética/efectos de los fármacos , Aptitud Genética/genética , Genoma Bacteriano/genética , Resistencia a las Penicilinas/efectos de los fármacos , Resistencia a las Penicilinas/genética , Penicilinas/farmacología , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/transmisión , Vacunas Neumococicas/inmunología , Serogrupo , Sudáfrica/epidemiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/aislamiento & purificación , Vacunas Conjugadas/inmunología , Vacuna Neumocócica Conjugada Heptavalente/inmunología , Locomoción
2.
Microb Genom ; 10(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913413

RESUMEN

Understanding how pathogens spread across geographical space is fundamental for control measures such as vaccination. Streptococcus pneumoniae (the pneumococcus) is a respiratory bacterium responsible for a large proportion of infectious disease morbidity and mortality globally. Even in the post-vaccination era, the rates of invasive pneumococcal disease (IPD) remain stable in most countries, including Israel. To understand the geographical spread of the pneumococcus in Israel, we analysed 1174 pneumococcal genomes from patients with IPD across multiple regions. We included the evolutionary distance between pairs of isolates inferred using whole-genome data within a relative risk (RR) ratio framework to capture the geographical structure of S. pneumoniae. While we could not find geographical structure at the overall lineage level, the extra granularity provided by whole-genome sequence data showed that it takes approximately 5 years for invasive pneumococcal isolates to become fully mixed across the country.This article contains data hosted by Microreact.


Asunto(s)
Genoma Bacteriano , Infecciones Neumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/aislamiento & purificación , Israel/epidemiología , Humanos , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/epidemiología , Secuenciación Completa del Genoma/métodos , Filogenia , Genómica
3.
Lancet Reg Health Eur ; 41: 100913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737571

RESUMEN

Background: Invasive pneumococcal disease due to serotype 3 (S3-IPD) is associated with high mortality rates and long-term adverse effects. The introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) into the Spanish paediatric immunisation programme has not led to a decrease in the adult S3-IPD. We aimed to analyse the incidence, clinical characteristics and genomics of S3-IPD in adults in Spain. Methods: Adult IPD episodes hospitalized in a Southern Barcelona hospital were prospectively collected (1994-2020). For genomic comparison, S3-IPD isolates from six Spanish hospitals (2008-2020) and historical isolates (1989-1993) were analysed by WGS (Illumina and/or MinION). Findings: From 1994 to 2020, 270 S3-IPD episodes were detected. When comparing pre-PCV (1994-2001) and late-PCV13 (2016-2020) periods, only modest changes in S3-IPD were observed (from 1.58 to 1.28 episodes per 100,000 inhabitants year). In this period, the incidence of the two main lineages shifted from 0.38 to 0.67 (CC180-GPSC12) and from 1.18 to 0.55 (CC260-GPSC83). The overall 30-day mortality remained high (24.1%), though a decrease was observed between the pre-PCV (32.4%; 95.0% CI, 22.0-45.0) and the late-PCV13 period (16.7%; 95.0% CI, 7.5-32.0) (p = 0.06). At the same time, comorbidities increased from 77.3% (95.0% CI, 65.0-86.0) to 85.7% (95.0% CI, 71.0-94.0) (p = 0.69). There were no differences in clinical characteristics or 30-day mortality between the two S3 lineages. Although both lineages were genetically homogeneous, the CC180-GPSC12 lineage presented a higher SNP density, a more open pan-genome, and a major presence of prophages and mobile genetic elements carrying resistance genes. Interpretation: Adult S3-IPD remained stable in our area over the study period despite PCV13 introduction in children. However, a clonal shift was observed. The decrease in mortality rates and the increase in comorbidities suggest a change in clinical management and overall population characteristics. The low genetic variability and absence of clinical differences between lineages highlight the role of the S3 capsule in the disease severity. Funding: This study has been funded by Instituto de Salud Carlos III (ISCIII) "PI18/00339", "PI21/01000", "INT22/00096", "FI22/00279", CIBER "CIBERES-CB06/06/0037", "CIBERINFEC-CB21/13/00009" and MSD grant "IISP 60168".

4.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38507601

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is a globally distributed, human obligate opportunistic bacterial pathogen which, although often carried commensally, is also a significant cause of invasive disease. Apart from multi-drug resistant and virulent clones, the rate and direction of pneumococcal dissemination between different countries remains largely unknown. The ability for the pneumococcus to take a foothold in a country depends on existing population configuration, the extent of vaccine implementation, as well as human mobility since it is a human obligate bacterium. To shed light on its international movement, we used extensive genome data from the Global Pneumococcal Sequencing project and estimated migration parameters between multiple countries in Africa. Data on allele frequencies of polymorphisms at housekeeping-like loci for multiple different lineages circulating in the populations of South Africa, Malawi, Kenya, and The Gambia were used to calculate the fixation index (Fst) between countries. We then further used these summaries to fit migration coalescent models with the likelihood-free inference algorithms available in the ELFI software package. Synthetic datawere additionally used to validate the inference approach. Our results demonstrate country-pair specific migration patterns and heterogeneity in the extent of migration between different lineages. Our approach demonstrates that coalescent models can be effectively used for inferring migration rates for bacterial species and lineages provided sufficiently granular population genomics surveillance data. Further, it can demonstrate the connectivity of respiratory disease agents between countries to inform intervention policy in the longer term.


Asunto(s)
Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Humanos , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/epidemiología , Frecuencia de los Genes , África , Kenia/epidemiología
5.
Microb Genom ; 9(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083600

RESUMEN

The introduction of pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) around the world has proved successful in preventing invasive pneumococcal disease. However, immunization against Streptococcus pneumoniae has led to serotype replacement by non-vaccine serotypes, including serotype 15A. Clonal complex 63 (CC63) is associated with many serotypes and has been reported in association with 15A after introduction of PCVs. A total of 865 CC63 isolates were included in this study, from the USA (n=391) and a global collection (n=474) from 1998-2019 and 1995-2018, respectively. We analysed the genomic sequences to identify serotypes and penicillin-binding protein (PBP) genes 1A, 2B and 2X, and other resistance determinants, to predict minimum inhibitory concentrations (MICs) against penicillin, erythromycin, clindamycin, co-trimoxazole and tetracycline. We conducted phylogenetic and spatiotemporal analyses to understand the evolutionary history of the 15A-CC63 sub-lineage. Overall, most (89.5 %, n=247) pre-PCV isolates in the CC63 cluster belonged to serotype 14, with 15A representing 6.5 % of isolates. Conversely, serotype 14 isolates represented 28.2 % of post-PCV CC63 isolates (n=618), whilst serotype 15A isolates represented 65.4 %. Dating of the CC63 lineage determined the most recent common ancestor emerged in the 1980s, suggesting the 15A-CC63 sub-lineage emerged from its closest serotype 14 ancestor prior to the development of pneumococcal vaccines. This sub-lineage was predominant in the USA, Israel and China. Multidrug resistance (to three or more drug classes) was widespread among isolates in this sub-lineage. We show that the CC63 lineage is globally distributed and most of the isolates are penicillin non-susceptible, and thus should be monitored.


Asunto(s)
Penicilinas , Streptococcus pneumoniae , Vacunas Conjugadas , Filogenia , Penicilinas/farmacología , Genómica
6.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711799

RESUMEN

Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location. The extent and mechanisms of spread, and vaccine-driven changes in fitness and antimicrobial resistance (AMR), remain largely unquantified. Using geolocated genome sequences from South Africa (N=6910, 2000-2014) we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately we estimated the population level changes in fitness of strains that are (vaccine type, VT) and are not (non-vaccine type, NVT) included in the vaccine, first implemented in 2009, as well as differences in strain fitness between those that are and are not resistant to penicillin. We estimated that pneumococci only become homogenously mixed across South Africa after about 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Further, in the years following vaccine implementation the relative fitness of NVT compared to VT strains increased (RR: 1.29 [95% CI 1.20-1.37]) - with an increasing proportion of these NVT strains becoming penicillin resistant. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in AMR may be transient.

7.
Lancet Microbe ; 3(10): e735-e743, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985351

RESUMEN

BACKGROUND: Serotype 24F is one of the emerging pneumococcal serotypes after the introduction of pneumococcal conjugate vaccine (PCV). We aimed to identify lineages driving the increase of serotype 24F in France and place these findings into a global context. METHODS: Whole-genome sequencing was performed on a collection of serotype 24F pneumococci from asymptomatic colonisation (n=229) and invasive disease (n=190) isolates among individuals younger than 18 years in France, from 2003 to 2018. To provide a global context, we included an additional collection of 24F isolates in the Global Pneumococcal Sequencing (GPS) project database for analysis. A Global Pneumococcal Sequence Cluster (GPSC) and a clonal complex (CC) were assigned to each genome. Phylogenetic, evolutionary, and spatiotemporal analysis were conducted using the same 24F collection and supplemented with a global collection of genomes belonging to the lineage of interest from the GPS project database (n=25 590). FINDINGS: Serotype 24F was identified in numerous countries mainly due to the clonal spread of three lineages: GPSC10 (CC230), GPSC16 (CC156), and GPSC206 (CC7701). GPSC10 was the only multidrug-resistant lineage. GPSC10 drove the increase in 24F in France and had high invasive disease potential. The international dataset of GPSC10 (n=888) revealed that this lineage expressed 16 other serotypes, with only six included in 13-valent PCV (PCV13). All serotype 24F isolates were clustered in a single clade within the GPSC10 phylogeny and long-range transmissions were detected from Europe to other continents. Spatiotemporal analysis showed GPSC10-24F took 3-5 years to spread across France and a rapid change of serotype composition from PCV13 serotype 19A to 24F during the introduction of PCV13 was observed in neighbouring country Spain. INTERPRETATION: Our work reveals that GPSC10 alone is a challenge for serotype-based vaccine strategy. More systematic investigation to identify lineages like GPSC10 will better inform and improve next-generation preventive strategies against pneumococcal diseases. FUNDING: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control and Prevention.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Filogenia , Infecciones Neumocócicas/epidemiología , Serogrupo , Streptococcus pneumoniae/genética , Vacunas Conjugadas
8.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763412

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is a leading cause of childhood mortality globally and in Cambodia. It is commensal in the human nasopharynx, occasionally resulting in invasive disease. Monitoring population genetic shifts, characterized by lineage and serotype expansions, as well as antimicrobial-resistance (AMR) patterns is crucial for assessing and predicting the impact of vaccination campaigns. We sought to elucidate the genetic background (global pneumococcal sequence clusters; GPSCs) of pneumococci carried by Cambodian children following perturbation by pneumococcal conjugate vaccine (PCV) 13. We sequenced pre-PCV13 (01/2013-12/2015, N=258) and post-PCV13 carriage isolates (01/2016-02/2017, N=428) and used PopPUNK and SeroBA to determine lineage prevalence and serotype composition. Following PCV13 implementation in Cambodia, we saw expansions of non-vaccine type (NVT) serotypes 23A (GPSC626), 34 (GPSC45) and 6D (GPSC16). We predicted antimicrobial susceptibility using the CDC-AMR pipeline and determined concordance with phenotypic data. The CDC-AMR pipeline had >90 % concordance with the phenotypic antimicrobial-susceptibility testing. We detected a high prevalence of AMR in both expanding non-vaccine serotypes and residual vaccine serotype 6B. Persistently high levels of AMR, specifically persisting multidrug-resistant lineages, warrant concern. The implementation of PCV13 in Cambodia has resulted in NVT serotype expansion reflected in the carriage population and driven by specific genetic backgrounds. Continued monitoring of these GPSCs during the ongoing collection of additional carriage isolates in this population is necessary.


Asunto(s)
Antiinfecciosos , Streptococcus pneumoniae , Pueblo Asiatico , Niño , Antecedentes Genéticos , Humanos , Vacunas Neumococicas , Streptococcus pneumoniae/genética , Vacunas Conjugadas
9.
Microb Genom ; 8(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35225216

RESUMEN

Mitis group Streptococcus are human obligate bacteria residing in the nasopharynx and oral cavity. They comprise both commensal and pathogenic species with the most well-known being Streptococcus pneumoniae - a leading cause of meningitis and pneumonia. A primary difference between the commensal and pathogenic species is the presence of the polysaccharide capsule - a major virulence factor in S. pneumoniae, also present in other commensal species. Our current understanding of the evolutionary divergence of the pathogenic and commensal species has been inferred from extant strains. Ancient genomes can further elucidate streptococcal evolutionary history. We extracted streptococcal genome reads from a 5700-year-old ancient metagenome and worked towards characterizing them. Due to excessive within- and between-species recombination common among streptococci we were unable to parse individual species. Further, the composite reads of the ancient metagenome do not fit within the diversity of any specific extant species. Using a capsular gene database and AT-content analysis we determined that this ancient metagenome is missing polysaccharide synthesis genes integral to streptococcal capsule formation. The presence of multiple zinc metalloproteases suggests that adaptation to host IgA1 had begun and the presence of other virulence factors further implies development of close host-microbe interactions, though the absence of a capsule suggests an inability to cause invasive disease. The presence of specific virulence factors such as pneumolysin implies stable maintenance of such genes through streptococcal evolution that may strengthen their value as anti-pneumococcal vaccine antigens, while maintaining awareness of their potential presence in commensal species. Following from Jensen et al.'s initial analysis we provide historical context for this long time human nasopharyngeal resident, the Mitis group Streptococcus.


Asunto(s)
Streptococcus pneumoniae , Streptococcus , Humanos , Vacunas Neumococicas , Streptococcus/genética , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Factores de Virulencia/genética
11.
J Rheumatol ; 48(10): 1559-1565, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33858978

RESUMEN

OBJECTIVE: Delays in the diagnosis and treatment of psoriatic arthritis (PsA) are common. These delays contribute to impairments in quality of life and joint damage. This study aims to calculate the incidence rate of PsA over time and identify clinical features that may be used for PsA prediction in patients with psoriasis (PsO). METHODS: The study population for PsA incidence analysis included 1128 participants enrolled in the Utah Psoriasis Initiative between 2002 and 2014. Clinical evaluation and medical record review were performed to identify new cases of PsA after enrollment. To identify PsO features associated with PsA, the population was restricted to 627 participants who did not have PsA before PsO phenotyping and had been followed up for subsequent PsA diagnosis. We conducted Cox proportional hazard regressions to estimate the HR of PsA associated with PsO characteristics and other health-related features. RESULTS: PsA incidence rate increased for > 60 years following PsO onset (trend P < 0.0001). There was a significant association between PsA and induration severity in untreated lesions (P < 0.001, HR 1.46), history of fingernail involvement (P < 0.001, HR 2.38), pustular PsO (P < 0.001, HR 3.32), fingernail involvement at enrollment (P < 0.001, HR 2.04), and Koebner phenomenon (P < 0.001, HR 1.90). Multivariate analysis yielded a model that included a history of fingernail involvement (P < 0.001, HR 2.16) and untreated induration (P < 0.001, HR 1.41). CONCLUSION: Risk of PsA increases steadily for > 60 years following PsO onset. Patient-reported history of PsO characteristics has greater predictive power than physician-measured features at enrollment visits. The characteristics identified in this study provide guidance for screening for PsA risk in patients with PsO.


Asunto(s)
Artritis Psoriásica , Psoriasis , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/epidemiología , Diagnóstico Precoz , Humanos , Incidencia , Calidad de Vida
12.
Genet Med ; 22(12): 2052-2059, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32773770

RESUMEN

PURPOSE: The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have developed guidelines for classifying germline variants as pathogenic or benign to interpret genetic testing results. Cosegregation analysis is an important component of the guidelines. There are two main approaches for cosegregation analysis: meiosis counting and Bayes factor-based quantitative methods. Of these, the ACMG/AMP guidelines employ only meiosis counting. The accuracy of either approach has not been sufficiently addressed in previous works. METHODS: We analyzed hypothetical, simulated, and real-life data to evaluate the accuracy of each approach for cancer-associated genes. RESULTS: We demonstrate that meiosis counting can provide incorrect classifications when the underlying genetic basis of the disease departs from simple Mendelian situations. Some Bayes factor approaches are currently implemented with inappropriate penetrance. We propose an improved penetrance model and describe several critical considerations, including the accuracy of cosegregation for moderate-risk genes and the impact of pleiotropy, population, and birth year. We highlight a webserver, COOL (Co-segregation Online, http://BJFengLab.org/ ), that implements an accurate Bayes factor cosegregation analysis. CONCLUSION: An appropriate penetrance model improves the accuracy of Bayes factor cosegregation analysis for high-penetrant variants, and is a better choice than meiosis counting whenever feasible.


Asunto(s)
Pruebas Genéticas , Variación Genética , Teorema de Bayes , Células Germinativas , Humanos , Mutación , Análisis de Secuencia de ADN , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...