Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766118

RESUMEN

Background: Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. Methods: We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary findings genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. Results: The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance using samples from the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, ~1% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. Conclusions: A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.

2.
NPJ Genom Med ; 9(1): 15, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409289

RESUMEN

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

3.
Curr Cardiol Rep ; 26(3): 135-146, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38277082

RESUMEN

PURPOSE OF REVIEW: Pathogenic DNA variants underlie many cardiovascular disease phenotypes. The most well-recognized of these include familial dyslipidemias, cardiomyopathies, arrhythmias, and aortopathies. The clinical presentations of monogenic forms of cardiovascular disease are often indistinguishable from those with complex genetic and non-genetic etiologies, making genetic testing an essential aid to precision diagnosis. RECENT FINDINGS: Precision diagnosis enables efficient management, appropriate use of emerging targeted therapies, and follow-up of at-risk family members. Genetic testing for these conditions is widely available but under-utilized. In this review, we summarize the potential benefits of genetic testing, highlighting the specific cardiovascular disease phenotypes in which genetic testing should be considered, and how clinicians can integrate guideline-directed genetic testing into their practice.


Asunto(s)
Cardiología , Cardiomiopatías , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Pruebas Genéticas , Cardiomiopatías/genética , Fenotipo
4.
medRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790351

RESUMEN

Irritable Bowel Syndrome (IBS) is characterized by abdominal pain and alterations in bowel pattern, such as constipation (IBS-C), diarrhea (IBS-D), or mixed (IBS-M). Since malabsorption of ingested carbohydrates (CHO) can cause abdominal symptoms that closely mimic those of IBS, identifying genetic mutations in CHO digestive enzymes associated with IBS symptoms is critical to ascertain IBS pathophysiology. Through candidate gene association studies, we identify several common variants in TREH, SI, SLC5A1 and SLC2A5 that are associated with IBS symptoms. By investigating rare recessive Mendelian or oligogenic inheritance patterns, we identify case-exclusive rare deleterious variation in known disease genes (SI, LCT, ALDOB, and SLC5A1) as well as candidate disease genes (MGAM and SLC5A2), providing potential evidence of monogenic or oligogenic inheritance in a subset of IBS cases. Finally, our data highlight that moderate to severe IBS-associated gastrointestinal symptoms are often observed in IBS cases carrying one or more of deleterious rare variants.

6.
J Cardiovasc Dev Dis ; 9(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286267

RESUMEN

Hypoplastic left heart syndrome (HLHS) is among the most severe cardiovascular malformations and understanding its causes is crucial to making progress in prevention and treatment. Genetic analysis is a broadly useful tool for dissecting complex causal mechanisms and it is playing a significant role in HLHS research. However, unlike classical Mendelian disorders where a relatively small number of genes are largely determinative of the occurrence and severity of the disease, the picture in HLHS is complex. De novo single-gene and copy number variant (CNV) disorders make an important contribution, but there is emerging evidence for causal contributions from lower penetrance and common variation. Integrating this emerging knowledge into clinical diagnostics and translating the findings into effective prevention and treatment remain challenges for the future.

7.
Eur J Hum Genet ; 30(9): 1017-1021, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577938

RESUMEN

In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.


Asunto(s)
Exoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Polimorfismo de Nucleótido Simple , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma
8.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395838

RESUMEN

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

10.
Genet Med ; 24(1): 109-118, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906478

RESUMEN

PURPOSE: To estimate the cost-effectiveness of genome sequencing (GS) for diagnosing critically ill infants and noncritically ill pediatric patients (children) with suspected rare genetic diseases from a United States health sector perspective. METHODS: A decision-analytic model was developed to simulate the diagnostic trajectory of patients. Parameter estimates were derived from a targeted literature review and meta-analysis. The model simulated clinical and economic outcomes associated with 3 diagnostic pathways: (1) standard diagnostic care, (2) GS, and (3) standard diagnostic care followed by GS. RESULTS: For children, costs of GS ($7284) were similar to that of standard care ($7355) and lower than that of standard care followed by GS pathways ($12,030). In critically ill infants, when cost estimates were based on the length of stay in the neonatal intensive care unit, the lowest cost pathway was GS ($209,472). When only diagnostic test costs were included, the cost per diagnosis was $17,940 for standard, $17,019 for GS, and $20,255 for standard care followed by GS. CONCLUSION: The results of this economic model suggest that GS may be cost neutral or possibly cost saving as a first line diagnostic tool for children and critically ill infants.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Niño , Mapeo Cromosómico , Análisis Costo-Beneficio , Humanos , Lactante , Recién Nacido , Modelos Económicos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
11.
NPJ Genom Med ; 6(1): 98, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811359

RESUMEN

We characterized US pediatric patients with clinical indicators of genetic diseases, focusing on the burden of disease, utilization of genetic testing, and cost of care. Curated lists of diagnosis, procedure, and billing codes were used to identify patients with clinical indicators of genetic disease in healthcare claims from Optum's de-identified Clinformatics® Database (13,076,038 unique patients). Distinct cohorts were defined to represent permissive and conservative estimates of the number of patients. Clinical phenotypes suggestive of genetic diseases were observed in up to 9.4% of pediatric patients and up to 44.7% of critically-ill infants. Compared with controls, patients with indicators of genetic diseases had higher utilization of services (e.g., mean NICU length of stay of 31.6d in a cohort defined by multiple congenital anomalies or neurological presentations compared with 10.1d for patients in the control population (P < 0.001)) and higher overall costs. Very few patients received any genetic testing (4.2-8.4% depending on cohort criteria). These results highlight the substantial proportion of the population with clinical features associated with genetic disorders and underutilization of genetic testing in these populations.

12.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570182

RESUMEN

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Asunto(s)
Enfermedad Aguda , Enfermedades Genéticas Congénitas , Secuenciación Completa del Genoma , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Evaluación de Resultado en la Atención de Salud
13.
Cancer ; 127(2): 310-318, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33048379

RESUMEN

BACKGROUND: Treatment characteristics such as cranial radiation therapy (CRT) do not fully explain adiposity risk in childhood acute lymphoblastic leukemia (ALL) survivors. This study was aimed at characterizing genetic variation related to adult body mass index (BMI) among survivors of childhood ALL. METHODS: Genetic associations of BMI among 1458 adult survivors of childhood ALL (median time from diagnosis, 20 years) were analyzed by multiple approaches. A 2-stage genome-wide association study in the Childhood Cancer Survivor Study (CCSS) and the St. Jude Lifetime Cohort Study (SJLIFE) was performed. BMI was a highly polygenic trait in the general population. Within the known loci, the BMI percent variance explained was estimated, and additive interactions (chi-square test) with CRT in the CCSS were evaluated. The role of DNA methylation in CRT interaction was further evaluated in a subsample of ALL survivors. RESULTS: In a meta-analysis of the CCSS and SJLIFE, 2 novel loci associated with adult BMI among survivors of childhood ALL (LINC00856 rs575792008 and EMR1 rs62123082; PMeta < 5E-8) were identified. It was estimated that the more than 700 known loci explained 6.2% of the variation in adult BMI in childhood ALL survivors. Within the known loci, significant main effects for 23 loci and statistical interactions with CRT at 9 loci (P < 7.0E-5) were further identified. At 2 CRT-interacting loci, DNA methylation patterns may have differed by age. CONCLUSIONS: Adult survivors of childhood ALL have genetic heritability for BMI similar to that observed in the general population. This study provides evidence that treatment with CRT can modify the effect of genetic variants on adult BMI in childhood ALL survivors.


Asunto(s)
Adultos Sobrevivientes de Eventos Adversos Infantiles , Índice de Masa Corporal , Supervivientes de Cáncer , Irradiación Craneana/efectos adversos , Obesidad/epidemiología , Obesidad/genética , Polimorfismo de Nucleótido Simple , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Adiposidad/genética , Adulto , Metilación de ADN/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
14.
NPJ Genom Med ; 5(1): 56, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319814

RESUMEN

Whole-genome sequencing (WGS) is positioned to become one of the most robust strategies for achieving timely diagnosis of rare genomic diseases. Despite its favorable diagnostic performance compared to conventional testing strategies, routine use and reimbursement of WGS are hampered by inconsistencies in the definition and measurement of clinical utility. For example, what constitutes clinical utility for WGS varies by stakeholder's perspective (physicians, patients, families, insurance companies, health-care organizations, and society), clinical context (prenatal, pediatric, critical care, adult medicine), and test purpose (diagnosis, screening, treatment selection). A rapidly evolving technology landscape and challenges associated with robust comparative study design in the context of rare disease further impede progress in this area of empiric research. To address this challenge, an expert working group of the Medical Genome Initiative was formed. Following a consensus-based process, we align with a broad definition of clinical utility and propose a conceptually-grounded and empirically-guided measurement toolkit focused on four domains of utility: diagnostic thinking efficacy, therapeutic efficacy, patient outcome efficacy, and societal efficacy. For each domain of utility, we offer specific indicators and measurement strategies. While we focus on diagnostic applications of WGS for rare germline diseases, this toolkit offers a flexible framework for best practices around measuring clinical utility for a range of WGS applications. While we expect this toolkit to evolve over time, it provides a resource for laboratories, clinicians, and researchers looking to characterize the value of WGS beyond the laboratory.

15.
NPJ Genom Med ; 5: 47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110627

RESUMEN

Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.

16.
Genome Med ; 12(1): 48, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460895

RESUMEN

Clinical whole-genome sequencing (WGS) offers clear diagnostic benefits for patients with rare disease. However, there are barriers to its widespread adoption, including a lack of standards for clinical practice. The Medical Genome Initiative consortium was formed to provide practical guidance and support the development of standards for the use of clinical WGS.


Asunto(s)
Genoma Humano , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/normas
17.
Am J Med Genet A ; 182(6): 1387-1399, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32233023

RESUMEN

BACKGROUND: Wolff-Parkinson-White (WPW) syndrome is a relatively common arrhythmia affecting ~1-3/1,000 individuals. Mutations in PRKAG2 have been described in rare patients in association with cardiomyopathy. However, the genetic basis of WPW in individuals with a structurally normal heart remains poorly understood. Sudden death due to atrial fibrillation (AF) can also occur in these individuals. Several studies have indicated that despite ablation of an accessory pathway, the risk of AF remains high in patients compared to general population. METHODS: We applied exome sequencing in 305 subjects, including 65 trios, 80 singletons, and 6 multiple affected families. We used de novo analysis, candidate gene approach, and burden testing to explore the genetic contributions to WPW. RESULTS: A heterozygous deleterious variant in PRKAG2 was identified in one subject, accounting for 0.6% (1/151) of the genetic basis of WPW in this study. Another individual with WPW and left ventricular hypertrophy carried a known pathogenic variant in MYH7. We found rare de novo variants in genes associated with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and PRDM16) in this cohort. There was an increased burden of rare deleterious variants (MAF ≤ 0.005) with CADD score ≥ 25 in genes linked to AF in cases compared to controls (P = .0023). CONCLUSIONS: Our findings show an increased burden of rare deleterious variants in genes linked to AF in WPW syndrome, suggesting that genetic factors that determine the development of accessory pathways may be linked to an increased susceptibility of atrial muscle to AF in a subset of patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Síndrome de Wolff-Parkinson-White/genética , Adolescente , Adulto , Ancirinas/genética , Fibrilación Atrial/patología , Proteínas Portadoras/genética , Niño , Estudios de Cohortes , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Atrios Cardíacos/patología , Proteínas de Homeodominio/genética , Humanos , Proteínas con Dominio LIM/genética , Masculino , Mutación/genética , Factores de Transcripción/genética , Secuenciación del Exoma , Síndrome de Wolff-Parkinson-White/patología , Adulto Joven , Proteína del Homeodomínio PITX2
18.
Nat Commun ; 10(1): 5791, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857576

RESUMEN

Edematous severe acute childhood malnutrition (edematous SAM or ESAM), which includes kwashiorkor, presents with more overt multi-organ dysfunction than non-edematous SAM (NESAM). Reduced concentrations and methyl-flux of methionine in 1-carbon metabolism have been reported in acute, but not recovered, ESAM, suggesting downstream DNA methylation changes could be relevant to differences in SAM pathogenesis. Here, we assess genome-wide DNA methylation in buccal cells of 309 SAM children using the 450 K microarray. Relative to NESAM, ESAM is characterized by multiple significantly hypomethylated loci, which is not observed among SAM-recovered adults. Gene expression and methylation show both positive and negative correlation, suggesting a complex transcriptional response to SAM. Hypomethylated loci link to disorders of nutrition and metabolism, including fatty liver and diabetes, and appear to be influenced by genetic variation. Our epigenetic findings provide a potential molecular link to reported aberrant 1-carbon metabolism in ESAM and support consideration of methyl-group supplementation in ESAM.


Asunto(s)
Metilación de ADN , Epigenoma/genética , Desnutrición Aguda Severa/genética , Adolescente , Adulto , Estudios de Casos y Controles , Preescolar , Islas de CpG/genética , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Jamaica/epidemiología , Malaui/epidemiología , Masculino , Mucosa Bucal , Estudios Prospectivos , Estudios Retrospectivos , Desnutrición Aguda Severa/mortalidad , Sobrevivientes , Adulto Joven
19.
J Med Genet ; 56(12): 783-791, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31023718

RESUMEN

Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Enfermedades Raras/genética , Niño , Exoma/genética , Enfermedades Genéticas Congénitas/diagnóstico , Genoma Humano/genética , Humanos , Lactante , Enfermedades Raras/diagnóstico , Secuenciación del Exoma/tendencias , Secuenciación Completa del Genoma
20.
Genome Med ; 11(1): 25, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31014393

RESUMEN

BACKGROUND: Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. METHODS: Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. RESULTS: We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. CONCLUSIONS: These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases.


Asunto(s)
Aberraciones Cromosómicas , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 14/genética , Impresión Genómica , Trastornos de los Cromosomas/patología , Metilación de ADN , Replicación del ADN , Humanos , Masculino , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...