Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Int ; 183: 108420, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38199131

RESUMEN

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Asunto(s)
Exposición por Inhalación , Nanoestructuras , Humanos , Exposición por Inhalación/análisis , Pulmón , Células Epiteliales , Medición de Riesgo
2.
ACS Appl Polym Mater ; 5(5): 3468-3479, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37201157

RESUMEN

For long-term mechanical ventilation, during anesthesia or intensive care, it is crucial to preserve a minimum level of humidity to avoid damage to the respiratory epithelium. Heat and moisture exchange filters (HME), also called "artificial noses," are passive systems that contribute to delivering inspired gases at about the same conditions of healthy respiration, i.e., 32 °C and relative humidity higher than 90%. Current HME devices suffer from limitations linked either to performance and filtration efficiency to their inadequate antibacterial efficiency, sterilization methods, and durability. Furthermore, in times of global warming and diminishing petroleum oil reserves, replacing the employing of synthetic materials with biomass biodegradable raw materials has considerable economic and environmental value. In the present study, a generation of eco-sustainable, bioinspired, and biodegradable HME devices are designed and developed through a green-chemistry process based on raw materials deriving from food waste and taking inspiration from the functioning, structure, and chemistry of our respiratory system. In particular, different blends are obtained by mixing aqueous solutions of gelatin and chitosan in various polymer ratios and concentrations and then by cross-linking them with different low amounts of genipin, a natural chemical cross-linker. Finally, the blends, post-gelation, are freeze-dried to obtain three-dimensional (3D) highly porous aerogels reproducing both the highly exposed surface area of the upper respiratory ways and the chemical composition of the mucus secretion covering the nasal mucosae. Results are comparable with accepted standards for HME devices and suitable bacteriostatic potential, thus validating these bioinspired materials as promising candidates to be used as an eco-sustainable generation of HME devices.

3.
NanoImpact ; 30: 100459, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36948454

RESUMEN

Engineered Nanomaterials (ENMs) have several uses in various industrial fields and are embedded in a myriad of consumer products. However, there is continued concern over the potential adverse health effects and environmental impacts of ENMs due to their unique physico-chemical characteristics. Currently, there are no specific international regulations for various ENMs. There are also no Occupational Exposure Limits (OEL) regulated by the European Union (EU) for nanomaterials in the form of nano-objects, their aggregates or agglomerates (NOAA). For ENMs the question of which metric to be used (i.e., mass, surface area, number concentrations) to determine the exposure is still not resolved. The aim of this work is to assess the worker exposure by inhalation in an industrial spray coating process by using all three metrics mentioned above. Two target ENMs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethyl-cellulose, AgHEC) generated for industrial-scale spraying processes were considered. Results showed that the averaged particle number concentration (10-100 nm) was below 2.7 104 cm-3 for both materials. The Lung Deposited Surface Area (LDSA) was in the range between 73 and 98 µm2cm-3 and the particle mass concentration (obtained by means of ICP-EOS off-line analysis) resulted below 70 µg m-3 and 0.4 µg m-3 for TiO2 and Ag, respectively. Although, the airborne particles concentration compared well with the NIOSH Recommended Exposure Level (REL) limits the contribution to the background, according to EN 17058 (Annex E) was significant (particularly in the particle number and PM1 mass concentrations). We successfully evaluated the worker exposure by means of the different airborne particles' metrics (number, surface and mass concentrations). We concluded that worker exposure assessment involving ENMs is a complex procedure with requires both real time and off-line measurements and a deep investigation of the background.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Contaminantes Ocupacionales del Aire/análisis , Tamaño de la Partícula , Exposición Profesional/efectos adversos , Aerosoles/análisis
4.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432374

RESUMEN

An industrial nanocoating process air emissions impact on public health was quantified by using the burden of disease (BoD) concept. The health loss was calculated in Disability Adjusted Life Years (DALYs), which is an absolute metric that enables comparisons of the health impacts of different causes. Here, the health loss was compared with generally accepted risk levels for air pollution. Exposure response functions were not available for Ag nanoform. The health loss for TiO2 nanoform emissions were 0.0006 DALYs per 100,000 persons per year. Moreover, the exposure risk characterization was performed by comparing the ground level air concentrations with framework values. The exposure levels were ca. 3 and 18 times lower than the derived limit values of 0.1 µg-TiO2/m3 and 0.01 µg-Ag/m3 for the general population. The accumulations of TiO2 and Ag nanoforms on the soil top layer were estimated to be up to 85 µg-TiO2/kg and 1.4 µg-Ag/kg which was considered low as compared to measured elemental TiO2 and Ag concentrations. This assessment reveals that the spray coating process air emissions are adequately controlled. This study demonstrated how the BoD concept can be applied to quantify health impacts of nanoform outdoor air emissions from an industrial site.

5.
Toxics ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36136463

RESUMEN

Effective particle density is a key parameter for assessing inhalation exposure of engineered NPs in occupational environments. In this paper, particle density measurements were carried out using two different techniques: one based on the ratio between mass and volumetric particle concentrations; the other one based on the ratio between aerodynamic and geometric particle diameter. These different approaches were applied to both field- and laboratory-scale atomization processes where the two target NPs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethylcellulose, AgHEC) were generated. Spray tests using TiO2N were observed to release more and bigger particles than tests with AgHEC, as indicated by the measured particle mass concentrations and volumes. Our findings give an effective density of TiO2N particle to be in a similar range between field and laboratory measurements (1.8 ± 0.5 g/cm3); while AgHEC particle density showed wide variations (3.0 ± 0.5 g/cm3 and 1.2 + 0.1 g/cm3 for field and laboratory campaigns, respectively). This finding leads to speculation regarding the composition of particles emitted because atomized particle fragments may contain different Ag-to-HEC ratios, leading to different density values. A further uncertainty factor is probably related to low process emissions, making the subtraction of background concentrations from AgHEC process emissions unreliable.

6.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214925

RESUMEN

Spray coatings' emissions impact to the environmental and occupational exposure were studied in a pilot-plant. Concentrations were measured inside the spray chamber and at the work room in Near-Field (NF) and Far-Field (FF) and mass flows were analyzed using a mechanistic model. The coating was performed in a ventilated chamber by spraying titanium dioxide doped with nitrogen (TiO2N) and silver capped by hydroxyethylcellulose (Ag-HEC) nanoparticles (NPs). Process emission rates to workplace, air, and outdoor air were characterized according to process parameters, which were used to assess emission factors. Full-scale production exposure potential was estimated under reasonable worst-case (RWC) conditions. The measured TiO2-N and Ag-HEC concentrations were 40.9 TiO2-µg/m3 and 0.4 Ag-µg/m3 at NF (total fraction). Under simulated RWC conditions with precautionary emission rate estimates, the worker's 95th percentile 8-h exposure was ≤171 TiO2 and ≤1.9 Ag-µg/m3 (total fraction). Environmental emissions via local ventilation (LEV) exhaust were ca. 35 and 140 mg-NP/g-NP, for TiO2-N and Ag-HEC, respectively. Under current situation, the exposure was adequately controlled. However, under full scale production with continuous process workers exposure should be evaluated with personal sampling if recommended occupational exposure levels for nanosized TiO2 and Ag are followed for risk management.

7.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159658

RESUMEN

Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.r.l. (Florence, Italy) was deployed to characterize the release of TiO2 NPs doped with nitrogen (TiO2-N) and Ag capped with hydroxyethyl cellulose (AgHEC) during automatic industrial spray-coating of polymethyl methacrylate (PMMA) and polyester. Aerosol particles were characterized inside the spray chamber at near field (NF) and far field (FF) locations using on-line and off-line instruments. Results showed that TiO2-N suspension produced higher particle number concentrations than AgHEC in the size range 0.3-1 µm (on average 1.9 102 p/cm3 and 2.5 101 p/cm3, respectively) after background removing. At FF, especially at worst case scenario (4 nozzles, 800 mL/min flow rate) for TiO2-N, the spray spikes were correlated with NF, with an observed time lag of 1 minute corresponding to a diffusion speed of 0.1 m/s. The averaged ratio between particles mass concentrations in the NF position and inside the spray chamber was 1.7% and 1.5% for TiO2-N and for AgHEC suspensions, respectively. The released particles' number concentration of TiO2-N in the size particles range 0.3-1 µm was comparable for both PMMA and polyester substrates, about 1.5 and 1.6 102 p/cm3. In the size range 0.01-30 µm, the aerosol number concentration at NF for both suspensions was lower than the nano reference values (NRVs) of 16·103 p/cm-3.

8.
Open Res Eur ; 2: 84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37645270

RESUMEN

Background: Photocatalytic air purifiers based on nano-titanium dioxide (TiO 2) visible light activation provide an efficient solution for removing and degrading contaminants in air. The potential detachment of TiO 2 particles from the air purifier to indoor air could cause a safety concern. A TiO 2 release potential was measured for one commercially available photocatalytic air purifier "Gearbox Wivactive" to ensure a successful implementation of the photocatalytic air purifying technology. Methods: In this study, the TiO 2 release was studied under laboratory-simulated conditions from a  Gearbox Wivactive consisting of ceramic honeycombs coated with photocatalytic nitrogen doped TiO 2 particles. The TiO 2 particle release factor was measured in scalable units according to the photoactive surface area and volume flow (TiO 2-ng/m 2×m 3). The impact of  Gearbox Wivactive on indoor concentration level under reasonable worst-case conditions was predicted by using the release factor and a well-mixed indoor aerosol model. Results: The instrumentation and experimental setup was not sufficiently sensitive to quantify the emissions from the photoactive surfaces. The upper limit for TiO 2 mass release was <185×10 -3 TiO 2-ng/m 2×m 3. Under realistic conditions the TiO 2 concentration level in a 20 m 3 room ventilated at rate of 0.5 1/h and containing two Gearbox Wivactive units resulted <20×10 -3 TiO 2-ng/m 3. Conclusions: The release potential was quantified for a photocatalytic surface in generalized units that can be used to calculate the emission potential for different photocatalytic surfaces used in various operational conditions. This study shows that the TiO 2 nanoparticle release potential was low in this case and the release does not cause relevant exposure as compared to proposed occupational exposure limit values for nanosized TiO 2. The TiO 2 release risk was adequately controlled under reasonable worst-case operational conditions.

9.
Environ Sci Pollut Res Int ; 29(10): 13905-13916, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34599449

RESUMEN

COVID-19 pandemic raised a debate regarding the role of airborne transmission. Information regarding virus-laden aerosol concentrations is still scarce in community indoors and what are the risks for general public and the efficiency of restriction policies. This work investigates, for the first time in Italy, the presence of SARS-CoV-2 RNA in air samples collected in different community indoors (one train station, two food markets, one canteen, one shopping centre, one hair salon, and one pharmacy) in three Italian cities: metropolitan city of Venice (NE of Italy), Bologna (central Italy), and Lecce (SE of Italy). Air samples were collected during the maximum spread of the second wave of pandemic in Italy (November and December 2020). All collected samples tested negative for the presence of SARS-CoV-2, using both real-time RT-PCR and ddPCR, and no significant differences were observed comparing samples taken with and without customers. Modelling average concentrations, using influx of customers' data and local epidemiological information, indicated low values (i.e. < 0.8 copies m-3 when cotton facemasks are used and even lower for surgical facemasks). The results, even if with some limitations, suggest that the restrictive policies enforced could effectively reduce the risk of airborne transmissions in the community indoor investigated, providing that physical distance is respected.


Asunto(s)
Microbiología del Aire , COVID-19 , Pandemias , SARS-CoV-2/aislamiento & purificación , Humanos , Italia , ARN Viral
10.
Sci Total Environ ; 809: 151137, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699823

RESUMEN

Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles , Humanos , Pandemias , ARN Viral , SARS-CoV-2
11.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947513

RESUMEN

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field). We calculated the deposition efficiency (E), finding it to be enhanced by increasing the spray pressure from 1 to 1.5 bar, but to be lowered when the number of operating sprays was increased, demonstrating the multiple spray system to be less efficient than a single spray. Far-field AgNPs emission showed a particle concentration increase of less than 10% as compared to the background level. This finding suggests that under our experimental conditions, our spray-coating process is not a critical source of worker exposure.

12.
J Appl Polym Sci ; 138(46): 51380, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34511635

RESUMEN

In response to the nowadays battle against SARS-CoV-2, we designed a new class of high performant filter media suitable to advance the facemask technology and provide new efficient widespread solutions against virus propagation. By means of the electrospinning technology we developed filter media based on polyvinyl alcohol (PVA) nanofibers doped with AgNPs combining three main performance requirements: high air filtration efficiency to capture nanometer-size particles, low airflow resistance essential to ensure breathability and antimicrobial activity to inactivate aerosolized microorganisms. PVA/AgNPs electrospun nanofibers were produced by electrospinning the dispersion of colloidal silver into the PVA water solution. A widespread physicochemical characterization was addressed to the Ag colloidal suspension. The key functional performances of the electrospun nanofibers were proven by water stability, antibacterial activity, and filtration efficiency and pressure drop measurements performed under conditions representative of facemasks. We assessed a total bacterial depletion associated to a filtering efficiency towards nano-aerosolized particles of 97.7% higher than required by the EN149 standard and a pressure drop in line with FFP1 and FFP2 masks, even at the highest filtration velocity. Such results pave the way to the application of PVA/AgNPs electrospun nanofibers in facemasks as advanced filtering media for protecting against airborne microorganisms.

13.
Environ Res ; 193: 110603, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33307081

RESUMEN

The spread of SARS-CoV-2 by contact (direct or indirect) is widely accepted, but the relative importance of airborne transmission is still controversial. Probability of outdoor airborne transmission depends on several parameters, still rather uncertain: virus-laden aerosol concentrations, viability and lifetime, minimum dose necessary to transmit the disease. In this work, an estimate of outdoor concentrations in northern Italy (region Lombardia) was performed using a simple box model approach, based on an estimate of respiratory emissions, with a specific focus for the cities of Milan and Bergamo (Italy). In addition, the probability of interaction of virus-laden aerosol with pre-existing particles of different sizes was investigated. Results indicate very low (<1 RNA copy/m3) average outdoor concentrations in public area, excluding crowded zones, even in the worst case scenario and assuming a number of infects up to 25% of population. On average, assuming a number of infects equal to 10% of the population, the time necessary to inspire a quantum (i.e. the dose of airborne droplet nuclei required to cause infection in 63% of susceptible persons) would be 31.5 days in Milan (range 2.7-91 days) and 51.2 days in Bergamo (range 4.4-149 days). Therefore, the probability of airborne transmission due to respiratory aerosol is very low in outdoor conditions, even if it could be more relevant for community indoor environments, in which further studies are necessary to investigate the potential risks. We theoretically examined if atmospheric particles can scavenge virus aerosol, through inertial impact, interception, and Brownian diffusion. The probability was very low. In addition, the probability of coagulation of virus-laden aerosol with pre-existing atmospheric particles resulted negligible for accumulation and coarse mode particles, but virus-laden aerosol could act as sink of ultrafine particles (around 0.01 µm in diameter). However, this will not change significantly the dynamics behaviour of the virus particle or its permanence time in atmosphere.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aerosoles , Ciudades , Humanos , Italia
14.
J Environ Sci (China) ; 24(11): 1954-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23534229

RESUMEN

The Venice Lagoon is exposed to atmospheric pollutants from industrial activities, thermoelectric power plants, petrochemical plants, incinerator, domestic heating, ship traffic, glass factories and vehicular emissions on the mainland. In 2005, construction began on the mobile dams (MOSE), one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide. These construction works could represent an additional source of pollutants. PM10 samples were taken on random days between 2007 and 2010 at three different sites: Punta Sabbioni, Chioggia and Malamocco, located near the respective dam construction worksites. Chemical analyses of V, Cr, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl and Pb in PM10 samples were performed by Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources. The correlation of measured data with meteorology, and source apportionment, failed to highlight a contribution specifically associated to the emissions of the MOSE construction works. The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area. Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10. Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal). A specific anthropogenic source of PM10 rich in Ni and Cr, active at the Chioggia site, was also identified.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Metales/química , Tamaño de la Partícula , Material Particulado , Contaminantes Químicos del Agua/química , Atmósfera , Monitoreo del Ambiente/métodos , Italia , Agua de Mar
15.
Chemosphere ; 76(8): 1017-22, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19524283

RESUMEN

Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.


Asunto(s)
Éteres Difenilos Halogenados/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Estaciones del Año , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química
16.
Ann Chim ; 97(5-6): 343-58, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17696013

RESUMEN

The results of an experimental analysis carried out to investigate PM(2.5) concentration levels and the content of polycyclic aromatic hydrocarbons, as well as inorganic trace elements in the atmospheric particles are presented. Measurements were taken with a micrometeorological station equipped with an optical PM(2.5) detector, and simultaneously, particles were collected on filters for subsequent chemical analyses. The average value of daily PM(2.5) concentration is 21.5 ug/m3 and real-time measurements indicate that the average concentration during the day (8 am to 8 pm) is about 25% lower than the nocturnal average. Short-time averages of PM2.5 decrease when the wind speed increases as consequence of the more efficient mixing. Meteorological measurements indicate the presence of a local daily (breeze) circulation with wind blowing from the Alps or the Adriatic Sea and, during this circulation, larger concentrations were observed, with wind coming from the Alps. Days of high PM(2.5) concentration with dominant anthropic or with prevalent crustal contributions were identified. Regarding trace metals, their average concentrations are comparable to those found in others urban areas, except for Cd (3 ng m(-3)), probably due to the presence of glass-works in Murano. The highest concentrations are observed for K (99 ng m(-3)) and Na (73 ng m(-3)), which are the main constituents of marine spray, while the lowest concentrations are observed for elements such as Cs and Co (respectively 0.01 and 0.02 ng m(-3)). Also the concentrations of PAH are comparable with those of other industrial areas, as their sum ranges from 0.16 ng m(-3) to 3.73 ng m(-3), but if considered as B(a)P toxicity equivalent, they are largely lower (0.036 +/- 0.026 ng m(-3)). From the analyses of discriminating ratios, it has been found that the main origin of PAH in PM(2.5) samples may be petrogenic, probably related to the presence of refinery and petrochemical plants on the mainland, although the contribution of combustion processes cannot be excluded.


Asunto(s)
Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/química , Oligoelementos/análisis , Cadmio/análisis , Ciudades , Geografía , Italia , Tamaño de la Partícula , Potasio/análisis , Sodio/análisis , Factores de Tiempo , Viento
17.
Appl Occup Environ Hyg ; 18(4): 244-55, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12637235

RESUMEN

In this work the determination of the aspiration efficiency of personal aerosol samplers, commonly used in occupational exposure assessment, is investigated by means of CFD techniques. Specifically, it will be described a code to calculate the particle trajectories in a given flow field. At the present state the code considers only the effects of the mean flow field on the particle motion, whereas the turbulent diffusion effects are neglected. Comparisons with experimental measurements are also given in the framework of a research contract, supported by the European Community, with several experimental contributions from the participants. The main objective of the European research is to develop a new approach to experimentation with airborne particle flows, working on a reduced scale. This methodology has the advantage of allowing real-time aerosol determination and use of small wind tunnels, with a better experimental control. In this article we describe how the methodology has been verified using computational fluid dynamics. Experimental and numerical aspiration efficiencies have been compared and the influence of gravity and turbulence intensity in full and reduced scale has been investigated. The numerical techniques described here are in agreement with previous similar research and allow at least qualitative predictions of aspiration efficiency for real samplers, taking care of orientation from the incoming air flow. The major discrepancies among predicted and experimental results may be a consequence of bounce effects, which are very difficult to eliminate also by greasing the sampler surface.


Asunto(s)
Aerosoles , Monitoreo del Ambiente/instrumentación , Inhalación/fisiología , Exposición Profesional/análisis , Eficiencia , Humanos , Italia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...