Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 678341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421939

RESUMEN

Eutrophication is one of the main threats to seagrass meadows, but there is limited knowledge on the interactive effects of nutrients under a changing climate, particularly for tropical seagrass species. This study aimed to detect the onset of stress in the tropical seagrass, Halophila stipulacea, by investigating the effect of in situ nutrient addition during an unusually warm summer over a 6-month period. We measured a suite of different morphological and biochemical community metrics and individual plant traits from two different sites with contrasting levels of eutrophication history before and after in situ fertilization in the Gulf of Aqaba. Nutrient stress combined with summer temperatures that surpassed the threshold for optimal growth negatively affected seagrass plants from South Beach (SB), an oligotrophic marine protected area, while H. stipulacea populations from North Beach (NB), a eutrophic and anthropogenically impacted area, benefited from the additional nutrient input. Lower aboveground (AG) and belowground (BG) biomass, reduced Leaf Area Index (LAI), smaller internodal distances, high sexual reproductive effort and the increasing occurrence of apical shoots in seagrasses from SB sites indicated that the plants were under stress and not growing under optimal conditions. Moreover, AG and BG biomass and internodal distances decreased further with the addition of fertilizer in SB sites. Results presented here highlight the fact that H. stipulacea is one of the most tolerant and plastic seagrass species. Our study further demonstrates that the effects of fertilization differ significantly between meadows that are growing exposed to different levels of anthropogenic pressures. Thus, the meadow's "history" affects it resilience and response to further stress. Our results suggest that monitoring efforts on H. stipulacea populations in its native range should focus especially on carbohydrate reserves in leaves and rhizomes, LAI, internodal length and percentage of apical shoots as suitable warning indicators for nutrient stress in this seagrass species to minimize future impacts on these valuable ecosystems.

2.
Ecol Lett ; 16(10): 1307-15, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23953054

RESUMEN

Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis.


Asunto(s)
Ciclo del Carbono , Ecosistema , Cambio Climático , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...