Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 11(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230210

RESUMEN

Although coffee silverskin (CS) has recently been used as a food ingredient, no knowledge has been reported on the effects of species or different post-harvest treatments on its chemical composition. Therefore, the fibre, volatile compounds, phenolic acid content, and antioxidant capacity of CS samples obtained at three roasting intensities (light, medium, and dark) from the Coffea arabica and C. canephora species, each subjected to a washing or a sun-drying ("natural") post-harvest treatment, were studied. Obtained results showed that the chemical composition of CS is due to species, roasting, post-harvest treatment, and interaction. In particular, natural Arabica CS showed the highest content of volatile compounds of Maillard and varietal origin, whereas washed Arabica CS showed the highest content of soluble dietary fibre and chlorogenic derivatives. Pyrroles, sulphur compounds, and pyridines contents were higher in Canephora CS than in Arabica CS. The dark-roasted washed Arabica CS showed the highest content of 5-O- and 3-O-caffeoylquinic acids, while the natural Arabica CS highlighted the highest antioxidant capacity. The effect of post-harvest treatments seemed to be emphasised in Arabica CS, independent of roasting, which did not significantly affect the antioxidant capacity of CS from either species.

2.
Foods ; 10(8)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34441568

RESUMEN

The cocoa bean shell (CBS) is one of the main cocoa byproducts with a prospective to be used as a functional food ingredient due to its nutritional and sensory properties. This study aims to define the chemical fingerprint of CBSs obtained from cocoa beans of diverse cultivars and collected in different geographical areas of Venezuela assessed using high-performance liquid chromatography coupled to photodiodes array and mass spectrometry (HPLC-PDA-MS/MS) and spectrophotometric assays combined with multivariate analysis for classification purposes. The study provides a comprehensive fingerprint and quantitative data for 39 compounds, including methylxanthines and several polyphenols, such as flavan-3-ols, procyanidins, and N-phenylpropenoyl amino acids. Several key cocoa markers, such as theobromine, epicatechin, quercetin-3-O-glucoside, procyanidin_A pentoside_3, and N-coumaroyl-l-aspartate_2, were found suitable for the classification of CBS according to their cultivar and origin. Despite the screening methods required a previous purification of the sample, both methodologies appear to be suitable for the classification of CBS with a high correlation between datasets. Finally, preliminary findings on the identification of potential contributors for the radical scavenging activity of CBS were also accomplished to support the valorization of this byproduct as a bioactive ingredient in the production of functional foods.

3.
Clin Nutr ; 37(4): 1193-1201, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28606702

RESUMEN

BACKGROUND & AIM: Regular intake of nuts improves lipid profile and thus reduces the cardiovascular (CV) risk associated with hyperlipidemia. The aim of the study was to investigate the effect of a dietary intervention with hazelnuts (HZNs, 15-30 g/day, depending on patient weight) on serum lipid profile, anthropometric parameters and fatty acids (FAs) composition of erythrocyte phospholipids in children and adolescents with primary hyperlipidemia. METHODS: Eight-week randomized, single blind, controlled, three-arm, parallel-group study. Sixty-six subjects were enrolled and randomized in 3 groups receiving: 1) hazelnuts with skin (HZN+S); 2) hazelnuts without skin (HZN-S); 3) dietary advices for hyperlipidemia only (controls). Before and after intervention, clinical parameters were measured and blood samples were collected for the evaluation of serum lipid levels and phospholipid FA composition of erythrocytes. RESULTS: Two-way ANOVA showed a significant effect of time on serum low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)/LDL-C ratio and non-HDL-C (p ≤ 0.001), but not of treatment and time × treatment interaction. In particular, HZN+S and HZN-S significantly reduced the concentrations of LDL-C and increased HDL-C/LDL-C ratio. HZNs also had a favorable impact on FAs composition of erythrocyte phospholipids, as demonstrated by time × treatment interaction, with a significant increase of monounsaturated fatty acids (MUFAs) (p = 0.008) and MUFAs/saturated fatty acids (SFAs) ratio (p = 0.002) with respect to the control group. CONCLUSIONS: For the first time, we documented a positive effect of HZN consumption on lipid profile and FA composition of erythrocyte phospholipids in children with primary hyperlipidemia. Further studies are encouraged to better define HZN impact on the markers of CV risk in this population. The trial was registered under ISRCTN.com, ID no. ISRCTN12261900.


Asunto(s)
Corylus , Grasas de la Dieta/uso terapéutico , Eritrocitos/efectos de los fármacos , Hiperlipidemias/dietoterapia , Lípidos/sangre , Adolescente , Niño , Grasas de la Dieta/farmacología , Ácidos Grasos/análisis , Ácidos Grasos Omega-3/sangre , Femenino , Humanos , Hiperlipidemias/metabolismo , Masculino , Fosfolípidos/química
4.
J Food Prot ; 80(1): 151-157, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28221886

RESUMEN

Technological properties and biogenic amine production were analyzed in 56 bacteriocinogenic lactococci and enterococci strains isolated from raw goat's milk. Fifteen lactococci strains were able to reduce milk pH to 5.3 or lower after 6 h, while enterococci strains were initially slow in producing acids. Lactococcus lactis subsp. lactis GLc06 and three strains of Enterococcus faecalis (GEn20, GEn22, and GEn23) presented high proteolytic activity. L. lactis subsp. lactis GLc06 and E. faecalis GEn22 also showed a high percentage of autolysis after only 4 h, reaching 71.11 and 97.67%, respectively, after 24 h. No strain was able to secrete exopolysaccharides, and L. lactis subsp. lactis GLc22 and 25 of the Enterococcus strains were able to produce diacetyl. L. lactis subsp. lactis GLc05 and 23 of the Enterococcus strains presented a high tolerance to NaCl at 10% (wt/vol). Regarding biogenic amine production, 12 strains (5 lactococci and 7 enterococci) were capable of forming tyramine and 4 strains (1 lactococcus and 3 enterococci) were capable of forming 2-phenylethylamine, but in very low amounts. GLc06 presented great acidifying, proteolytic, and autolytic activities, and GLc05 was capable of growing at high NaCl concentrations (10%, wt/vol), possessing medium autolytic and proteolytic activities. Some enterococci strains produced diacetyl and high autolytic and extracellular proteolytic activities and also presented resistance to high NaCl concentrations. The interesting technological properties presented by some bacteriocinogenic strains can justify their use by the dairy industry, with the aim of ensuring both safety due to bacteriocin production and technological transformations in fermented products.


Asunto(s)
Enterococcus , Leche/microbiología , Animales , Aminas Biogénicas , Queso , Cabras , Lactococcus lactis
5.
Food Chem ; 217: 398-408, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27664651

RESUMEN

Roasted hazelnuts can be consumed as whole nuts, or as an ingredient in the confectionary and bakery industries and are highly appreciated for their typical taste, aroma and crunchy texture. In this work, two hazelnut types (TGT, Ordu) from two harvests were roasted using two different systems (hot air, infrared) at different time/temperature combinations, and the evolution of oxidative stability, the total phenolic content (TPC), the antioxidant capacity, the mechanical and acoustic properties and the sensory perception were determined during storage. The results showed that the oxidative stability was increased by roasting hazelnuts at 120°C for 40min with hot air system. Similar overall trends were not found for the TPC, the antioxidant capacity and the mechanical-acoustic properties. However, for the maintenance of high antioxidant activity, a storage time of 6months at 4°C is recommended. The two roasting systems gave hazelnuts with significant sensory differences only at high roasting temperature.


Asunto(s)
Corylus/química , Almacenamiento de Alimentos/métodos , Calor , Rayos Infrarrojos , Olfato , Adulto , Antioxidantes/análisis , Antioxidantes/química , Femenino , Almacenamiento de Alimentos/normas , Humanos , Masculino , Fenoles/análisis , Fenoles/química , Sensación/fisiología , Olfato/fisiología , Factores de Tiempo
6.
Int J Food Microbiol ; 214: 159-167, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26310130

RESUMEN

Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.


Asunto(s)
Aminas Biogénicas/análisis , Queso/microbiología , Lactococcus lactis/crecimiento & desarrollo , Microbiota , Nisina/biosíntesis , Animales , Aminas Biogénicas/biosíntesis , Brasil , Bovinos , Queso/análisis , Coagulasa/metabolismo , Femenino , Microbiología de Alimentos , Cabras
7.
J Sci Food Agric ; 95(8): 1678-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25123494

RESUMEN

BACKGROUND: Hazelnut skin is the perisperm of the hazelnut kernel. It is separated from the kernel during the roasting process and is normally discarded. Recent studies have reported that hazelnut skin is a rich source of dietary fibre as well as of natural antioxidants owing to the presence of phenolic compounds. The aim of this study was to assess the use of hazelnut skins obtained from different cultivars for enhancing the nutritional value of fresh egg pasta. RESULTS: Skins obtained from roasted hazelnuts of four different varieties were used at three concentrations as a flour replacement in fresh egg pasta. Hazelnut skin concentration significantly influenced all evaluated physicochemical parameters as well as consumers' appreciation for the pasta, but significant differences were also observed between the four varieties. Although pasta produced with 10 and 15% hazelnut skin displayed the highest content of polyphenolic compounds and antioxidant activity in vitro, pasta containing 5% Tombul hazelnut skin showed maximum consumer preference. CONCLUSION: The results obtained in the present study highlighted that it is possible to use hazelnut skin in fresh pasta production to obtain a fortified food with high fibre content and antioxidant activity. The characteristics of the resulting pasta were strictly correlated with the hazelnut variety used for skin production and, of course, with the percentage of skin that was added.


Asunto(s)
Corylus , Harina/análisis , Manipulación de Alimentos/métodos , Valor Nutritivo , Nueces/química , Polifenoles/análisis , Antioxidantes/administración & dosificación , Antioxidantes/análisis , Fibras de la Dieta , Huevos , Calidad de los Alimentos , Calor
8.
FEMS Yeast Res ; 9(2): 217-25, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19220867

RESUMEN

To further elucidate the biosynthesis of lipids in flor strains under fermentative conditions, the transcription levels of the lipid biosynthetic genes ACS1, ACS2, ACC1, OLE1, ERG1, ERG11, ARE1 and ARE2, as well as the lipid composition and cell viability of a flor strain were compared with that of a non-flor strain during hypoxic and aerobic fermentations in the absence of lipid nutrients. While no significant differences in transcription levels or lipid compositions were observed between the two strains when oxygen was not limiting, significant differences were seen during hypoxic fermentation. In this last condition, the flor strain, in spite of higher levels of transcription of hypoxic genes, lost the abilities to desaturate fatty acids and complete ergosterol biosynthesis, and showed a dramatic loss of viability. In contrast, the non-flor strain, which showed lower transcription levels, was able to reach a balanced lipid composition and maintained a higher cell viability. One possible explanation is that the flor strain requires a higher amount of oxygen than the non-flor strain in order to carry out the oxygen-dependent steps of lipid biosynthesis under fermentative conditions.


Asunto(s)
Metabolismo de los Lípidos , Viabilidad Microbiana , Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/fisiología , Aerobiosis , Anaerobiosis , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética
9.
Int J Food Microbiol ; 121(1): 84-91, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18055051

RESUMEN

During must fermentation wine strains are exposed to a variety of biotic and abiotic stresses which, when prevailing over the cellular defence systems, can affect cell viability with negative consequences on the progression of the fermentative process. To investigate the ability of wine strains to survive and adapt to unfavourable conditions of fermentation, the lipid composition, membrane integrity, cell viability and fermentative activity of three strains of Saccharomyces cerevisiae were analysed during hypoxic growth in a sugar-rich medium lacking lipid nutrients. These are stressful conditions, not unusual during must fermentation, which, by affecting lipid biosynthesis may exert a negative effect on yeast viability. The results obtained showed that the three strains were able to modulate cell lipid composition during fermentation. However, only two of them, which showed highest viability and membrane integrity at the end of the fermentation process, reached a fatty acid composition which seemed to be optimal for a successful adaptation. In particular, C16/TFA and UFA/TFA ratios, more than total lipid and ergosterol contents, seem to be involved in yeast adaptation.


Asunto(s)
Adaptación Fisiológica , Ácidos Grasos/análisis , Lípidos de la Membrana/análisis , Saccharomyces cerevisiae , Vino/microbiología , Ergosterol/análisis , Fermentación , Citometría de Flujo , Microbiología de Alimentos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Tiempo
10.
Can J Microbiol ; 50(9): 669-74, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15644919

RESUMEN

Biosynthesis of cell membrane lipids is a crucial metabolic pathway for the growth and viability of eucaryotic microorganisms. In Saccharomyces cerevisiae, unsaturated fatty acids and ergosterol synthesis needs molecular oxygen. Stuck and sluggish fermentations are related to this aspect of metabolism and constitute a major problem in the wine industry. Anaerobiosis, when lipids are not available in the growth medium, highly stresses cells. They release lipid biosynthesis metabolites and soon cease to multiply. This paper describes an investigation of the nutritional role of exogenous lipids from inactivated yeast cells (IYCs). Fermentations were carried out in a nitrogen-rich synthetic medium similar to grape juice with glucose and fructose as carbon sources, without lipid sources, and in anaerobiosis. The effect of the addition of IYC was assessed. Cell growth, cell lipid composition, glucose and fructose consumption, and acetic acid production were measured during fermentation. Addition of IYC boosted cell growth and sugar consumption, whereas acetic acid production decreased. Biomass yield was influenced by ergosterol availability and increased when IYCs were added. Fatty acid composition of yeast cells was changed by IYC addition.


Asunto(s)
Metabolismo de los Lípidos , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Medios de Cultivo , Ergosterol/metabolismo , Ácidos Grasos/metabolismo , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...