Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 6(3): e0136720, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34100636

RESUMEN

Bariatric surgery is often the preferred method to resolve obesity and diabetes, with ∼800,000 cases worldwide yearly and high outcome variability. The ability to predict the long-term body mass index (BMI) change following surgery has important implications for individuals and the health care system in general. Given the tight connection between eating habits, sugar consumption, BMI, and the gut microbiome, we tested whether the microbiome before any treatment is associated with different treatment outcomes, as well as other intakes (high-density lipoproteins [HDL], triglycerides, etc.). A projection of the gut microbiome composition of obese (sampled before and after bariatric surgery) and lean patients into principal components was performed, and the relation between this projection and surgery outcome was studied. The projection revealed three different microbiome profiles belonging to lean, obese, and obese individuals who underwent bariatric surgery, with the postsurgery microbiome more different from the lean microbiome than the obese microbiome. The same projection allowed for a prediction of BMI loss following bariatric surgery, using only the presurgery microbiome. The microbial changes following surgery were an increase in the relative abundance of Proteobacteria and Fusobacteria and a decrease in Firmicutes. The gut microbiome can be decomposed into main components depicting the patient's development and predicting in advance the outcome. Those may be translated into the better clinical management of obese individuals planning to undergo metabolic surgery. IMPORTANCE BMI and diabetes can affect the gut microbiome composition. Bariatric surgery has large variabilities in the outcome. The microbiome was previously shown to be a good predictor for multiple diseases. We analyzed here the gut microbiome before and after bariatric surgery and showed the following. (i) The microbiome before surgery can be used to predict surgery outcomes. (ii) The postsurgery microbiome drifts further away from the lean microbiome than the microbiome of the presurgery obese patients. These results can lead to a microbiome-based presurgery decision whether to perform surgery.

2.
Gene ; 721S: 100004, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34530998

RESUMEN

BACKGROUND: Avian avulavirus-1 (AAvV-1, previously Newcastle Disease Virus) is responsible for poultry and wild birds' disease outbreaks. Numerous whole genome sequencing methods were reported for this virus. These methods included cloning, specific primers amplification, shotgun PCR approaches, Sequence Independent Single Primer Amplification and next generation sequencing platform kits. METHODS: Three methods were used to sequence 173 Israeli Avian avulavirus-1 field isolates and one vaccine strain (VH). The sequencing was performed on Proton and Ion Torrent Personal Genome Machine and to a lesser extent, Illumina MiSeq and NextSeq sequencers. Target specific primers (SP) and Sequence Independent Single Primer Amplification (SISPA) products sequenced via the Ion torrent sequencer had a high error rate and truncated genomes. All the next generation sequencing platform sequencing kits generated high sequence accuracy and near-complete genomic size. RESULTS: A high level of mutations was observed in the intergenic regions between the avian avulavirus-1 genes. Within genes, multiple regions are more mutated than the Fusion region currently used for typing. CONCLUSIONS: Our findings suggest that the whole genome sequencing by the Ion torrent sequencing kit is sufficient. However, when higher fidelity is desired, the Illumina NextSeq and Proton torrent sequencing kits were found to be preferable.

3.
Gene X ; 1: 100004, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32550541

RESUMEN

BACKGROUND: Avian avulavirus-1 (AAvV-1, previously Newcastle Disease Virus) is responsible for poultry and wild birds' disease outbreaks. Numerous whole genome sequencing methods were reported for this virus. These methods included cloning, specific primers amplification, shotgun PCR approaches, Sequence Independent Single Primer Amplification and next generation sequencing platform kits. METHODS: Three methods were used to sequence 173 Israeli Avian avulavirus-1 field isolates and one vaccine strain (VH). The sequencing was performed on Proton and Ion Torrent Personal Genome Machine and to a lesser extent, Illumina MiSeq and NextSeq sequencers. Target specific primers (SP) and Sequence Independent Single Primer Amplification (SISPA) products sequenced via the Ion torrent sequencer had a high error rate and truncated genomes. All the next generation sequencing platform sequencing kits generated high sequence accuracy and near-complete genomic size. RESULTS: A high level of mutations was observed in the intergenic regions between the avian avulavirus-1 genes. Within genes, multiple regions are more mutated than the Fusion region currently used for typing. CONCLUSIONS: Our findings suggest that the whole genome sequencing by the Ion torrent sequencing kit is sufficient. However, when higher fidelity is desired, the Illumina NextSeq and Proton torrent sequencing kits were found to be preferable.

5.
mSystems ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29766049

RESUMEN

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1α-deficient mice following administration of DSS are correlated with the unique gut microbiota compositions of the mice. However, when these mice are exposed to WT microbiota by cohousing, their gut microbiota composition returns to resemble that of WT mice, and their disease severity increases significantly. As inflammatory bowel diseases are such common diseases, with limited effective treatments to date, there is a great need to better understand the interactions between microbiota composition, the immune system, and colitis. This study shows correlation between microbiota composition and DSS resistance; it may potentially lead to the development of improved probiotics for IBD treatment.

6.
Cell Rep ; 23(1): 50-57, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617672

RESUMEN

RNA-editing mechanisms, which induce nucleotide substitution in the RNA, increase transcript and protein diversities. Editing dysregulation has been shown to lead to grave outcomes, and transcriptome-wide aberrant RNA editing has been found in tumors. However, little is known about the involvement of editing in other diseases. Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease characterized by a loss of tolerance for autoantigens from various tissues and the production of multiple autoantibodies. Here, we show that blood samples from individuals with SLE have abnormally high levels of RNA editing, some of which affect proteins and potentially generate novel autoantigens. We suggest that elevated RNA editing, either by ADARs or APOBECs, may be involved in the pathophysiology of SLE, as well as in other autoimmune diseases, by generating or increasing the autoantigen load, a key requisite for the progression of autoimmunity.


Asunto(s)
Autoantígenos/genética , Lupus Eritematoso Sistémico/genética , Edición de ARN , Desaminasas APOBEC , Adenosina Desaminasa/metabolismo , Citidina Desaminasa , Citosina Desaminasa/metabolismo , Humanos , Tolerancia Inmunológica/genética , Lupus Eritematoso Sistémico/inmunología , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...