Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 192(9): 4153-63, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24659690

RESUMEN

Lymphadenopathy in autoimmune and other lymphoproliferative diseases is in part characterized by immunoblasts and vascular proliferation. The lymph node vasculature, along with the nonvascular stromal compartment, supports lymphocyte function, and targeting vascular-stromal expansion in inflamed nodes may modulate lymphocyte function in disease. CD11c(+) cells are essential for vascular-stromal proliferation and the upregulation of vascular endothelial growth factor (VEGF) needed for vascular proliferation. However, targetable CD11c(+) cell-derived molecular mediators, the identity of relevant CD11c(+) cells, and whether CD11c(+) cells directly stimulate VEGF-expressing stromal cells are poorly understood. In this study we show that CD11c(+) CD11b(+) CCR2-dependent monocytes and CCR7-dependent dendritic cells express IL-1ß. IL-1ß blockade, IL-1ß deficiency in radiosensitive cells, and CCR2/CCR7 double deficiency but not single deficiency all attenuate immunization-induced vascular-stromal proliferation. gp38(+) stromal fibroblastic reticular cells (FRCs) that express VEGF are enriched for Thy1(+) cells and partially overlap with CCL21-expressing FRCs, and FRC VEGF is attenuated with IL-1ß deficiency or blockade. IL-1ß localizes to the outer borders of the T zone, where VEGF-expressing cells are also enriched. Ex vivo, CD11b(+) cells enriched for IL-1ß(+) cells can directly induce cultured gp38(+)Thy1(+) FRCs to upregulate VEGF. Taken together, these results suggest a mechanism whereby multiple recruited CD11c(+) populations express IL-1ß and directly modulate FRC function to help promote the initiation of vascular-stromal growth in stimulated lymph nodes. These data provide new insight into how CD11c(+) cells regulate the lymph node vascular-stromal compartment, add to the evolving understanding of functional stromal subsets, and suggest a possible utility for IL-1ß blockade in preventing inflammatory lymph node growth.


Asunto(s)
Antígeno CD11c/metabolismo , Interleucina-1beta/metabolismo , Ganglios Linfáticos/metabolismo , Células del Estroma/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígeno CD11c/inmunología , Separación Celular , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Interleucina-1beta/inmunología , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Células del Estroma/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología
2.
Clin Immunol ; 144(2): 109-16, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22717771

RESUMEN

Lymphadenopathy occurs in many autoimmune and inflammatory diseases, and vascular proliferation is a common feature in the enlarged lymph nodes. The lymph node vasculature plays critical roles in delivering immune cells as well as oxygen and micronutrients, and therefore represents a potential target for therapeutic manipulation of immunity. In this review, we discuss recent insights made in understanding the growth and function of the vascular and associated stromal compartment in immune-stimulated lymph nodes and the potential utility of altering this process in autoimmune diseases.


Asunto(s)
Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/inmunología , Vasos Linfáticos/citología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Vasos Sanguíneos/citología , Células Endoteliales/metabolismo , Humanos , Células del Estroma/citología
3.
J Immunol ; 187(11): 5558-67, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22031764

RESUMEN

Lymph node blood vessels play important roles in the support and trafficking of immune cells. The blood vasculature is a component of the vascular-stromal compartment that also includes the lymphatic vasculature and fibroblastic reticular cells (FRCs). During immune responses as lymph nodes swell, the blood vasculature undergoes a rapid proliferative growth that is initially dependent on CD11c(+) cells and vascular endothelial growth factor (VEGF) but is independent of lymphocytes. The lymphatic vasculature grows with similar kinetics and VEGF dependence, suggesting coregulation of blood and lymphatic vascular growth, but lymphatic growth has been shown to be B cell dependent. In this article, we show that blood vascular, lymphatic, and FRC growth are coordinately regulated and identify two distinct phases of vascular-stromal growth--an initiation phase, characterized by upregulated vascular-stromal proliferation, and a subsequent expansion phase. The initiation phase is CD11c(+) cell dependent and T/B cell independent, whereas the expansion phase is dependent on B and T cells together. Using CCR7(-/-) mice and selective depletion of migratory skin dendritic cells, we show that endogenous skin-derived dendritic cells are not important during the initiation phase and uncover a modest regulatory role for CCR7. Finally, we show that FRC VEGF expression is upregulated during initiation and that dendritic cells can stimulate increased fibroblastic VEGF, suggesting the scenario that lymph node-resident CD11c(+) cells orchestrate the initiation of blood and lymphatic vascular growth in part by stimulating FRCs to upregulate VEGF. These results illustrate how the lymph node microenvironment is shaped by the cells it supports.


Asunto(s)
Linfocitos B/inmunología , Microambiente Celular/inmunología , Quimiotaxis de Leucocito/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/irrigación sanguínea , Linfocitos T/inmunología , Animales , Antígeno CD11c/inmunología , Separación Celular , Células Endoteliales/inmunología , Fibroblastos/inmunología , Citometría de Flujo , Ganglios Linfáticos/inmunología , Vasos Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Factor A de Crecimiento Endotelial Vascular/inmunología
4.
Gastroenterology ; 135(4): 1238-1247, 1247.e1-3, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18655789

RESUMEN

BACKGROUND & AIMS: The Cdx2 homeobox gene exerts multiple functions including trophectoderm specification, antero-posterior patterning, and determination of intestinal identity. The aim of this study was to map genomic regions that regulate the transcription of Cdx2, with a particular interest in the gut. METHODS: Genomic fragments covering 13 kilobase (kb) of the mouse Cdx2 locus were analyzed in transgenic mice and in cell assays. RESULTS: No fragment was active in the trophectoderm. Fragments containing the first intron and extending up to -5-kb upstream of the transcription start site became active posteriorly at gastrulation and then inactive at midgestation in every tissue including the endoderm. Specific persistence of activity in the intestinal endoderm/epithelium beyond midgestation requires extending the genomic fragment up to -9 kb. We identified a 250-base pair segment around -8.5-kb binding and responding to endodermal factors, with a stimulatory effect exerted synergistically by HNF4alpha, GATA6, Tcf4, and beta-catenin. These factors were able to activate endogenous expression of Cdx2 in nonintestinal Hela cells. CONCLUSIONS: Multiple regulatory regions control the complex developmental pattern of Cdx2, including far upstream sequences required for the persistence of gene expression specifically in the gut epithelium throughout life. Cooperation between HNF4alpha, GATA6, beta-catenin, and Tcf4 contributes to the intestine-specific expression of Cdx2.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Intestinos/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Blastocisto/citología , Blastocisto/fisiología , Factor de Transcripción CDX2 , Ciego/embriología , Ciego/fisiología , Línea Celular , Endodermo/embriología , Endodermo/fisiología , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Genómica , Células HeLa , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Intestinos/citología , Operón Lac , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Estómago/embriología , Estómago/fisiología , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Factor de Transcripción 4 , Transfección , Trofoblastos/citología , Trofoblastos/fisiología , beta Catenina/genética , beta Catenina/metabolismo
5.
Am J Pathol ; 170(2): 733-44, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17255339

RESUMEN

The homeobox gene CDX2 plays a major role in development, especially in the gut, and it also acts as a tumor suppressor in the adult colon. Using orthotopic and heterotopic xenografts of human primary colorectal tumor cells and cell lines in nude mice, we addressed the effect of the microenvironment on CDX2 expression. In cells expressing CDX2 at a high level in culture, this level was maintained in subcutaneous grafts but was reduced when implanted into the cecum wall. Reciprocally, in cells with low CDX2 expression in culture, the level remained low in grafts into the cecum wall but was stimulated subcutaneously. In vitro co-cultures showed that CDX2 expression was activated in cells grown on layers of skin fibroblasts but not on intestinal fibroblasts. The stimulation was transcriptional, as assessed by transfection experiments with reporter plasmids containing the murine Cdx2 promoter. Together, these data demonstrate experimentally that CDX2 expression is adaptable and strongly dependent on the microenvironment surrounding the tumor cells. We exclude a role of the Notch pathway in this regulation. The regulation of CDX2 by the microenvironment might be relevant during the process of metastatic dissemination when the gene is transiently turned down in invasive cells.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Neoplasias/biosíntesis , Receptores Notch/metabolismo , Transducción de Señal , Adulto , Animales , Factor de Transcripción CDX2 , Ciego/metabolismo , Ciego/patología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...