RESUMEN
Erythropoietin (EPO) suppresses drug-induced apoptosis in EPO-receptor-positive leukemia cells and allows cells to persist after drug treatment by promoting cellular senescence. Importantly a small proportion of senescent cells can re-enter the cell cycle and resume proliferation after drug treatment, resulting in disease recurrence/persistence. Using a single-cell assay to track individual cells that exit a drug-induced senescence-like state, we show that cells exhibit asynchronous exit from a senescent-like state, and display different rates of proliferation. Escaped cells retain sensitivity to drug treatment, but display inter-clonal variability. We also find heterogeneity in gene expression with some of the escaped clones retaining senescence-associated gene expression. Senescent leukemia cells exhibit changes in gene expression that affect metabolism and senescence-associated secretory phenotype (SASP)-related genes. Herein, we generate a senescence gene signature and show that this signature is a prognostic marker of worse overall survival in AML and multiple other cancers. A portion of senescent leukemia cells depend on lysosome activity; chloroquine, an inhibitor of lysosome activity, promotes senolysis of some senescent leukemia cells. Our study indicates that the serious risks associated with the use of erythropoietin-stimulating agents (ESAs) in anemic cancer patients may be attributed to their ability to promote drug-tolerant cancer cells through the senescence program.
Asunto(s)
Eritropoyetina , Leucemia , Neoplasias , Humanos , Leucemia/tratamiento farmacológico , Leucemia/genética , Apoptosis , Eritropoyetina/genética , Eritropoyetina/farmacología , Senescencia Celular/genéticaRESUMEN
There are conflicting reports on the adverse effects of erythropoietin (EPO) for the management of cancer-associated anemia. The recognition that erythropoietin receptors (EPORs) are expressed outside the erythroid lineage and concerns that erythropoiesis-stimulating agents (ESAs) may cause tumors to grow and increase the risk of venous thromboembolism have resulted in substantially fewer cancer patients receiving ESA therapy to manage myelosuppressive chemotherapy. In this study, we found that EPO suppresses p53-dependent apoptosis induced by genotoxic (daunorubicin, doxorubicin, and γ-radiation) and non-genotoxic (nutlin-3a) agents and induces a senescence-like state in myeloid leukemia cells. EPO interferes with stress-dependent Mdm2 downregulation and leads to the destabilization of p53 protein. EPO selectively modulates the expression of p53 target genes in response to DNA damage preventing the induction of a number of noncoding RNAs (ncRNAs) previously associated with p53-dependent apoptosis. EPO also enhances the expression of the cyclin-dependent kinase inhibitor p21WAF1 and promotes recruitment of p53 to the p21 promoter. In addition, EPO antagonizes Mcl-1 protein degradation in daunorubicin-treated cells. Hence, EPO signaling targets Mcl-1 expression and the p53-Mdm2 network to promote tumor cell survival.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Daunorrubicina/farmacología , Doxorrubicina/farmacología , Eritropoyetina/farmacología , Leucemia/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Humanos , Leucemia/patología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation in LMNA that produces an aberrant lamin A protein, progerin. The accumulation of progerin in HGPS cells leads to an aberrant nuclear morphology, genetic instability, and p53-dependent premature senescence. How p53 is activated in response to progerin production is unknown. Here we show that young cycling HGPS fibroblasts exhibit chronic DNA damage, primarily in S phase, as well as delayed replication fork progression. We demonstrate that progerin binds to PCNA, altering its distribution away from replicating DNA in HGPS cells, leading to γH2AX formation, ATR activation, and RPA Ser33 phosphorylation. Unlike normal human cells that can be immortalized by enforced expression of telomerase alone, immortalization of HGPS cells requires telomerase expression and p53 repression. In addition, we show that the DNA damage response in HGPS cells does not originate from eroded telomeres. Together, these results establish that progerin interferes with the coordination of essential DNA replication factors, causing replication stress, and is the primary signal for p53 activation leading to premature senescence in HGPS. Furthermore, this damage response is shown to be independent of progerin farnesylation, implying that unprocessed lamin A alone causes replication stress.
Asunto(s)
Senescencia Celular/fisiología , Replicación del ADN/efectos de los fármacos , Lamina Tipo A/farmacología , Progeria/metabolismo , Daño del ADN/fisiología , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Precursores de Proteínas/metabolismo , Telomerasa/metabolismo , Telómero/metabolismoRESUMEN
In this issue of Molecular Cell, Sen et al. (2013) identify HDAC5 as a deacetylase with specificity for the K120 site of p53, a key residue of p53 that undergoes acetylation after DNA damage and regulates target gene selection.
Asunto(s)
Acetilación/efectos de los fármacos , Apoptosis/genética , Daño del ADN/genética , Histona Desacetilasas/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , HumanosRESUMEN
Several reports have pointed to the negative involvement of p53 in transcriptional regulation of the human immunodeficiency virus type 1 long-terminal repeat (HIV-1 LTR). We recently demonstrated that through their physical interaction, cdk9 phosphorylates p53 on Ser-392, leading to p53 stability and accumulation. As a result, p53 stalled transcriptional elongation of the HIV-1 LTR and significantly reduced HIV-1 replication in primary microglia and astrocytes. Therefore, we sought to identify the mechanisms used by cdk9 to allow this p53 function. Using western blot analysis, we found that cdk9 promotes inhibition and phosphorylation of Mdm2 on Ser-395, thus preventing degradation of p53, a protein that is directly involved in promoting p53 ubiquitination. On the other hand, we showed that cdk9 phosphorylates Pirh2 on Ser-211 and Thr-217 residues through their physical interaction. Phosphorylation of Pirh2 renders it inactive and may contribute to p53-inhibition of transcriptional elongation of the HIV-1 LTR. Hence, we suggest that phosphorylation of Pirh2 may be a novel target for the inhibition of HIV-1 gene expression.
Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/metabolismo , Humanos , Datos de Secuencia Molecular , Fosforilación , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transfección , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
The intracellular levels of the p53 tumor suppressor protein are regulated through various pathways and involve numerous regulatory components. A recent study published in Cell Research identifies a proteasome-independent pathway of p53 protein degradation in the nucleolus that is dependent on Def and Calpain3.
Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , HumanosRESUMEN
Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2(-/-) mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.
Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Tolerancia a Radiación , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genéticaRESUMEN
The p53 protein is activated by stress signals and exhibits both protective and death-promoting functions that are considered important for its tumor suppressor function. Emerging evidence points toward an additional role for p53 in metabolism. Here, we identify Lpin1 as a p53-responsive gene that is induced in response to DNA damage and glucose deprivation. Lpin1 is essential for adipocyte development and fat metabolism, and mutation in this gene is responsible for the lypodystrophy phenotype in fld mice. We show that p53 and Lpin1 regulate fatty acid oxidation in mouse C2C12 myoblasts. p53 phosphorylation on Ser18 in response to low glucose is ROS and ATM dependent. Lpin1 expression in response to nutritional stress is controlled through the ROS-ATM-p53 pathway and is conserved in human cells. Lpin1 provides a critical link between p53 and metabolism that may be an important component in mediating the tumor suppressor function of p53.
Asunto(s)
Metabolismo Energético , Ácidos Grasos/metabolismo , Glucosa/deficiencia , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Estado Nutricional , Estrés Oxidativo , Fosfatidato Fosfatasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Oxidación-Reducción , Fosfatidato Fosfatasa/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Serina , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening-induced replicative senescence is dependent on the ATM-p53-p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53-responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti-proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum-dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late-passage cells, and ectopic Pin1 expression rescues cells from BTG2-induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.
Asunto(s)
Senescencia Celular , Proteínas Inmediatas-Precoces/metabolismo , Mitógenos/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Peptidilprolil Isomerasa de Interacción con NIMA , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genéticaRESUMEN
The p53-induced protein with a death domain, PIDD, was identified as a p53 target gene whose main role is to execute apoptosis in a p53-dependent manner. To investigate the physiological role of PIDD in apoptosis, we generated PIDD-deficient mice. Here, we report that, although PIDD expression is inducible upon DNA damage, PIDD-deficient mice undergo apoptosis normally not only in response to DNA damage, but also in response to various p53-independent stress signals and to death receptor (DR) engagement. This indicates that PIDD is not required for DNA damage-, stress-, and DR-induced apoptosis. Also, in the absence of PIDD, both caspase-2 processing and activation occur in response to DNA damage. Our findings demonstrate that PIDD does not play an essential role for all p53-mediated or p53-independent apoptotic pathways.
Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Daño del ADN , Estrés Fisiológico , Animales , Caspasa 2/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Marcación de Gen , Etiquetado Corte-Fin in Situ , Ratones , Procesamiento Proteico-Postraduccional , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Irradiación Corporal TotalRESUMEN
A fundamental property of cancer cells is the preferential utilization of glycolysis over aerobic respiration to produce ATP. Renewed interest in understanding the mechanism underlying this metabolic shift in energy production is broadening our understanding of the relationship between cancer and cellular metabolism. In a recent article, Matoba et al. report that the p53 tumor suppressor regulates the expression of SCO2, a protein that is required for the assembly of cytochrome c oxidase (COX), a multimeric protein complex required for oxidative phosphorylation. The implication of these findings is that aerobic respiration is compromised in cells that lack functional p53.
Asunto(s)
Adenosina Trifosfato/biosíntesis , Metabolismo Energético/fisiología , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Animales , Ciclo del Ácido Cítrico/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Glucólisis/fisiología , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares , Fosforilación OxidativaRESUMEN
The p53 tumor-suppressor gene is mutated in a wide range of human cancers. The ability of p53 to control passage through the cell cycle (in G1 and in G2) and to control apoptosis in response to abnormal proliferative signals and stress, including DNA damage, is considered to be important for its tumor-suppression function. p53 is a transcription factor that binds to DNA in a sequence-specific manner to activate transcription of target genes. In this chapter, we describe the application of differential display to identify p53-regulated genes.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genes p53 , Neoplasias/genética , Sitios de Unión , Northern Blotting , Ciclo Celular , Clonación Molecular , Daño del ADN , ADN Complementario/metabolismo , Humanos , Mutación , Reacción en Cadena de la Polimerasa , ARN/química , Temperatura , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/químicaRESUMEN
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.
Asunto(s)
Apoptosis , Ciclo Celular , Sistema de Señalización de MAP Quinasas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Fosforilación , Proteína p53 Supresora de Tumor/análisis , Proteínas Quinasas p38 Activadas por Mitógenos/fisiologíaRESUMEN
The p53 tumor suppressor promotes cell cycle arrest or apoptosis in response to diverse stress stimuli. p53-mediated cell death depends in large part on transcriptional up-regulation of target genes. One of these targets, P53-induced protein with a death domain (PIDD), was shown to function as a mediator of p53-dependent apoptosis. Here we show that PIDD is a cytoplasmic protein, and that PIDD-induced apoptosis and growth suppression in embryonic fibroblasts depend on the adaptor protein receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD). We provide evidence that PIDD-induced cell death is associated with the early activation of caspase-2 and later activation of caspase-3 and -7. Our results also show that caspase-2(-/-), in contrast to RAIDD(-/-), mouse embryonic fibroblasts, are only partially resistant to PIDD. Our findings suggest that caspase-2 contributes to PIDD-mediated cell death, but that it is not the sole effector of this pathway.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas Portadoras/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD , Caspasa 2 , Caspasas/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Fibroblastos , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunoprecipitación , Ratones , Ratones NoqueadosRESUMEN
We used DNA microarray screening to identify Ckap2 (cytoskeleton associated protein 2) as a novel p53 target gene in a mouse erythroleukemia cell line. DNA damage induces human and mouse CKAP2 expression in a p53-dependent manner and p53 activates the Ckap2 promoter. Overexpressed Ckap2 colocalizes with and stabilizes microtubules. In p53-null cells, overexpression of Ckap2 induces tetraploidy with aberrant centrosome numbers, suggesting disturbed mitosis and cytokinesis. In p53-competent cells, Ckap2 does not induce tetraploidy but activates p53-mediated cell cycle arrest and apoptosis. Our data suggest the existence of a functional positive feedback loop in which Ckap2 activates the G1 tetraploidy checkpoint and prevents aneuploidy.
Asunto(s)
Aneuploidia , Proteínas del Citoesqueleto/genética , Leucemia Eritroblástica Aguda/genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Ciclo Celular/genética , Centrosoma/fisiología , Proteínas del Citoesqueleto/metabolismo , Células HCT116 , Humanos , Leucemia Eritroblástica Aguda/patología , Ratones , Microtúbulos/metabolismo , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Activación TranscripcionalRESUMEN
The ability of p53 to promote apoptosis and cell cycle arrest is believed to be important for its tumor suppression function. Besides activating the expression of cell cycle arrest and proapoptotic genes, p53 also represses a number of genes. Previous studies have shown an association between p53 activation and down-regulation of c-myc expression. However, the mechanism and physiological significance of p53-mediated c-myc repression remain unclear. Here, we show that c-myc is repressed in a p53-dependent manner in various mouse and human cell lines and mouse tissues. Furthermore, c-myc repression is not dependent on the expression of p21(WAF1). Abrogating the repression of c-myc by ectopic c-myc expression interferes with the ability of p53 to induce G(1) cell cycle arrest and differentiation but enhances the ability of p53 to promote apoptosis. We propose that p53-dependent cell cycle arrest is dependent not only on the transactivation of cell cycle arrest genes but also on the transrepression of c-myc. Chromatin immunoprecipitation assays indicate that p53 is bound to the c-myc promoter in vivo. We report that trichostatin A, an inhibitor of histone deacetylases, abrogates the ability of p53 to repress c-myc transcription. We also show that p53-mediated transcriptional repression of c-myc is accompanied by a decrease in the level of acetylated histone H4 at the c-myc promoter and by recruitment of the corepressor mSin3a. These data suggest that p53 represses c-myc transcription through a mechanism that involves histone deacetylation.
Asunto(s)
Fase G1 , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismoRESUMEN
While p53 family members have distinct nonoverlapping functions, the involvement of p63 and p73 in p53-mediated apoptosis is controversial. Results of a recent study indicate that at least in thymocytes, p53-dependent apoptosis occurs independently of p63 and p73.
Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor/fisiología , Animales , Proteínas de Unión al ADN/fisiología , Genes Supresores de Tumor , Ratones , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Transactivadores/fisiología , Proteína Tumoral p73 , Proteínas Supresoras de TumorRESUMEN
Tumor cells can acquire aggressive phenotypes secondary to the loss of expression of the wild-type p53 (WTp53) protein or by the gain of function for selected mutant p53 (MTp53) proteins. However, it is unclear as to whether the development of aggressive phenotypes is inter-related. Herein we report the radiosensitivity, chemosensitivity, and in vivo growth characteristics of isogenic p53(-/-) MEF ras-transformants that variably express an MTp53 protein. Initial experiments revealed significant clonal heterogeneity with respect to cellular sensitivity to DNA-damaging agents (i.e. ionizing radiation, ultraviolet radiation, cis-platinum, and methotrexate) within subclones of a pre-existing p53(-/-) MEF cell population. Moreover, this differential sensitivity was also observed within subclones of p53(-/-) MEF cells transformed with an activated ras allele, suggesting that secondary genetic events and clonal selection, but not cellular transformation per se, may drive the resistance patterns for certain null-p53 tumors. In contrast, uniform resistance was observed following the additional transfection of an MTp53 allele (MTp53pro193) into p53(-/-) MEF transformants and p53(-/-) DP-16 Friend erythroleukemia cells, consistent with a gain of MTp53 function for this allele. Relative tumor growth rate and experimental metastatic ability was not enhanced by MTp53pro193 expression. Our results support the concept that gain of MTp53pro193 function leads to the selection of dominant clones, which may exhibit cellular resistance following cancer therapy.
Asunto(s)
Daño del ADN , Metástasis de la Neoplasia/genética , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética , Animales , Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Humanos , Técnicas In Vitro , Ratones , Mutación , Metástasis de la Neoplasia/prevención & control , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismoRESUMEN
The tumor suppressor p53 is regulated in part by binding to cellular proteins. We used p53 as bait in the yeast two-hybrid system and isolated homeodomain-interacting protein kinase 1 (HIPK1) as a p53-binding protein. Deletion analysis showed that amino acids 100-370 of p53 and amino acids 885-1093 of HIPK1 were sufficient for HIPK1-p53 interaction. HIPK1 was capable of autophosphorylation and specific serine phosphorylation of p53. The HIPK1 gene was highly expressed in human breast cancer cell lines and oncogenically transformed mouse embryonic fibroblasts. HIPK1 was localized to human chromosome band 1p13, a site frequently altered in cancers. Gene-targeted HIPK1-/- mice were grossly normal but oncogenically transformed HIPK1 -/- mouse embryonic fibroblasts exhibited reduced transcription of Mdm2 and were more susceptible than transformed HIPK1+/+ cells to apoptosis induced by DNA damage. Carcinogen-treated HIPK1 -/- mice developed fewer and smaller skin tumors than HIPK1+/+ mice. HIPK1 may thus play a role in tumorigenesis, perhaps by means of the regulation of p53 and/or Mdm2.