Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 8: 496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676502

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that evokes calcium release from intracellular organelles by the engagement of calcium release channels, including members of the Transient Receptor Potential (TRP) family, such as TRPML1, the (structurally) related Two Pore Channel type 1 (TPC1) and TPC2 channels as well as Ryanodine Receptors type 1 (RYR1; Guse, 2012). NAADP evokes calcium release from acidic calcium stores of many cell types (Guse, 2012), and NAADP-sensitive Ca2+ stores have been described in hippocampal neurons of the rat (Bak et al., 1999; McGuinness et al., 2007). Glutamate triggers Ca2+-mediated neuronal excitotoxicity in inflammation-induced neurodegenerative pathologies such as Multiple Sclerosis (MS; Friese et al., 2014), and when applied extracellularly to neurons glutamate can elevate NAADP levels in these cells. Accordingly, glutamate-evoked Ca2+ signals from intracellular organelles were inhibited by preventing organelle acidification (Pandey et al., 2009). Analysis of reported RNA sequencing experiments of cultured hippocampal neurons revealed the abundance of Mcoln1 (encoding TRPML1), Tpcn1, and Tpcn2 (encoding TPC1 and TPC2, respectively) as potential NAADP target channels in these cells. Transcripts encoding Ryr1 were not found in contrast to Ryr2 and Ryr3. To study the contribution of NAADP signaling to glutamate-evoked calcium transients in murine hippocampal neurons we used the NAADP antagonists Ned-19 (Naylor et al., 2009) and BZ194 (Dammermann et al., 2009). Our results show that both NAADP antagonists significantly reduce glutamate-evoked calcium transients. In addition to extracellular glutamate application, we studied synchronized calcium oscillations in the cells of the neuronal cultures evoked by addition of the GABAA receptor antagonist bicuculline. Pretreatment with Ned-19 (50 µM) or BZ194 (100 µM) led to an increase in the frequency of bicuculline-induced calcium oscillations at the cost of calcium transient amplitudes. Interestingly, Ned-19 triggered a rise in intracellular calcium concentrations 25 min after bicuculline stimulation, leading to the question whether NAADP acts as a neuroprotective messenger in hippocampal neurons. Taken together, our results are in agreement with the concept that NAADP signaling significantly contributes to glutamate evoked Ca2+ rise in hippocampal neurons and to the amplitude and frequency of synchronized Ca2+ oscillations triggered by spontaneous glutamate release events.

2.
Heliyon ; 3(6): e00318, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28649667

RESUMEN

BACKGROUND: Protein kinases play central roles in cell and tissue development. Protein kinase CK2, an ubiquitously expressed serine/threonine kinase has severe impacts on embryo- and spermatogenesis. Since its role in neurogenesis has so far only been investigated in very few studies, we analysed the role of CK2 in neural stem cells by using two specific inhibitors. METHODS: Neural stem cells were isolated from the subventricular zone of neonatal mice, using a neurosphere approach. Proliferation of the neurospheres, as well as their differentiation was investigated with and without inhibition of CK2. Changes in proliferation were assessed by counting the number and measuring the diameter of the neurospheres. Furthermore, the absolute cell numbers within the neurospheres were estimated. Differentiation was induced by retinoic acid in single cells after dissociation of the neurospheres. CK2 was inhibited at consecutive time points after induction of the differentiation process. RESULTS: CK2 inhibition reduced the amount and size of proliferating neurospheres dose dependently. Adding the CK2 inhibitor CX-4945 at the start of differentiation we observed a dose-dependent effect of CX-4945 on cell viability and glia cell differentiation. Adding quinalizarin, a second CK2 inhibitor, at the start of differentiation led to an elevated level of apoptosis, which was accompanied by a reduced neural differentiation. Adding the CK2 inhibitors at 72 h after the start of differentiation had no effect on stem cell differentiation. Conclusion: Inhibition of CK2 influences early gliogenesis in a time point and concentration dependent manner. GENERAL SIGNIFICANCE: The use of a CK2 inhibitor significantly affects the neural stem cell niche.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...