Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 10(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34831083

RESUMEN

The cellular cytoskeleton provides the cell with a mechanical rigidity that allows mechanical interaction between cells and the extracellular environment. The actin structure plays a key role in mechanical events such as motility or the establishment of cell polarity. From the earliest stages of development, as represented by the ex vivo expansion of naïve embryonic stem cells (ESCs), the critical mechanical role of the actin structure is becoming recognized as a vital cue for correct segregation and lineage control of cells and as a regulatory structure that controls several transcription factors. Naïve ESCs have a characteristic morphology, and the ultrastructure that underlies this condition remains to be further investigated. Here, we investigate the 3D actin cytoskeleton of naïve mouse ESCs using super-resolution optical reconstruction microscopy (STORM). We investigate the morphological, cytoskeletal, and mechanical changes in cells cultured in 2i or Serum/LIF media reflecting, respectively, a homogeneous preimplantation cell state and a state that is closer to embarking on differentiation. STORM imaging showed that the peripheral actin structure undergoes a dramatic change between the two culturing conditions. We also detected micro-rheological differences in the cell periphery between the cells cultured in these two media correlating well with the observed nano-architecture of the ESCs in the two different culture conditions. These results pave the way for linking physical properties and cytoskeletal architecture to cell morphology during early development.


Asunto(s)
Actinas/metabolismo , Forma de la Célula , Células Madre Embrionarias de Ratones/citología , Citoesqueleto de Actina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Elasticidad , Imagenología Tridimensional , Ratones , Nanopartículas/química , Viscosidad
2.
Rep Prog Phys ; 81(3): 032602, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29369822

RESUMEN

Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.


Asunto(s)
Fusión de Membrana , Liposomas Unilamelares/metabolismo , Animales , Supervivencia Celular , Campos Electromagnéticos , Humanos , Fusión de Membrana/efectos de la radiación , Fenómenos Ópticos
3.
Sci Rep ; 6: 30054, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27444356

RESUMEN

Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.

4.
Commun Integr Biol ; 8(2): e1022010, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26479403

RESUMEN

Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft.

5.
Cytoskeleton (Hoboken) ; 72(2): 71-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25786787

RESUMEN

Cells dynamically interact with and probe their environment by growing finger-like structures named filopodia. The dynamics of filopodia are mainly caused by the actin rich core or shaft which sits inside the filopodial membrane and continuously undergoes changes like growth, shrinking, bending, and rotation. Recent experiments combining advanced imaging and manipulation tools have provided detailed quantitative data on the correlation between mechanical properties of filopodia, their molecular composition, and the dynamic architecture of the actin structure. These experiments have revealed how retrograde flow and twisting of the actin shaft within filopodia can generate traction on external substrates. Previously, the mechanism behind filopodial pulling was mainly attributed to retrograde flow of actin, but recent experiments have shown that rotational dynamics can also contribute to the traction force. Although force measurements have indicated a step-like behavior in filopodial pulling, no direct evidence has been provided to link this behavior to a molecular motor like myosin. Therefore, the underlying biochemical and mechanical mechanisms behind filopodial force generation still remain to be resolved.


Asunto(s)
Actinas/fisiología , Seudópodos/fisiología , Actinas/metabolismo , Animales , Humanos , Seudópodos/metabolismo , Seudópodos/ultraestructura
6.
Proc Natl Acad Sci U S A ; 112(1): 136-41, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535347

RESUMEN

Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell-cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle.


Asunto(s)
Actinas/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Fenómenos Biomecánicos , Cuerpo Celular/metabolismo , Células HEK293 , Humanos , Torsión Mecánica
7.
Nanotechnology ; 25(50): 505101, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25431845

RESUMEN

The diverse physical properties of membranes play a critical role in many membrane associated biological processes. Proteins responsible for membrane transport can be affected by the lateral membrane order and lateral segregation of proteins is often controlled by the preference of certain membrane anchors for membrane phases having a physically ordered state. The dynamic properties of coexisting membrane phases are often studied by investigating their thermal behavior. Optical trapping of gold nanoparticles is a useful tool to generate local phase transitions in membranes. The high local temperatures surrounding an irradiated gold nanoparticle can be used to melt a part of a giant unilamellar lipid vesicle (GUV) which is then imaged using phase sensitive fluorophores embedded within the bilayer. By local melting of GUVs we reveal how a protein-free, one component lipid bilayer can mediate passive transport of fluorescent molecules by localized and transient pore formation. Also, we show how tubular membrane curvatures can be generated by optical pulling from the melted region on the GUV. This will allow us to measure the effect of membrane curvature on the phase transition temperature.


Asunto(s)
Membrana Dobles de Lípidos/química , Colorantes Fluorescentes , Oro/química , Nanopartículas del Metal , Fosfatidilcolinas/química , Liposomas Unilamelares/química
8.
Eur Biophys J ; 43(12): 595-602, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25256431

RESUMEN

Membrane nanotubes, ubiquitous in cellular systems, adopt a spectrum of curvatures and shapes that are dictated by their intrinsic physical characteristics as well as their interactions with the local cellular environment. A high bending flexibility is needed in the crowded cytoplasm where tubes often need to bend significantly in the axial direction at sub-micron length scales. We find the stiffness of spontaneously formed membrane nanotubes by measuring the persistence length of reconstituted membrane nanotubes freely suspended in solution and imaged by fluorescence microscopy. By quantifying the tube diameter we demonstrate for the first time that the persistence length scales linearly with radius. Although most tubes are uni-lamellar, the predicted linear scaling between tube radius and persistence length allows us to identify tubes that spontaneously form as multilamellar structures upon hydration. We provide the first experimental evidence that illumination of lipid fluorophores can have a profound effect on the lipid bilayer which we sensitively detect as a continuous change in the tube persistence length with time. The novel assay and methodology here presented has potential for quantification of the structural reinforcement of membrane tubes by scaffolding proteins.


Asunto(s)
Membrana Celular/química , Nanotubos/química , Membrana Dobles de Lípidos/química , Microscopía Fluorescente , Fosfolípidos/química
9.
Soft Matter ; 10(24): 4268-74, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24781036

RESUMEN

We reveal that the gel to fluid phase transition causes spherical membrane vesicles to release a finite number of molecules in several consecutive and localized events. By locally melting Giant Unilamellar lipid Vesicles (GUVs), using an optically trapped gold nanoparticle (AuNP) as a local heat source, we establish a local phase transition on the spherical GUV membrane clearly visualized using a phase sensitive fluorescent marker. We measure transient permeation events through this transition zone visualized as de-quenching of calcein as it escapes the interior of the GUV. Since biological membranes share several features with melting membranes, like nanoscale domain formation and critical density fluctuations, similar passive membrane transport could potentially be abundant in living cells.


Asunto(s)
Congelación , Calor , Liposomas Unilamelares/química , Oro/química , Nanopartículas del Metal/química , Permeabilidad
10.
ACS Nano ; 7(10): 8333-9, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24116711

RESUMEN

In the study of living soft matter, we often seek to understand the mechanisms underlying the motion of a single molecule, an organelle, or some other tracer. The experimentally observed signature of the tracer is masked by its thermal fluctuations, inherent drift of the system, and instrument noise. In addition, the timing or length scales of the events of interest are often unknown. In the current issue of ACS Nano, Chen et al. present a general method for extracting the underlying dynamics from time series. Here, we provide an easily accessible introduction to the method, put it into perspective with the field, and exemplify how it can be used to answer important out-standing questions within soft matter and living systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...