Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Eur J Hum Genet ; 32(8): 928-937, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38678163

RESUMEN

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.


Asunto(s)
Histonas , Fenotipo , Humanos , Masculino , Femenino , Histonas/genética , Niño , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Preescolar , Adolescente , Adulto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología
3.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284452

RESUMEN

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Cuidadores , Preescolar , Humanos , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/terapia , ARN Helicasas DEAD-box , Autoinforme , Lactante
4.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37962958

RESUMEN

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Asunto(s)
Trastornos del Neurodesarrollo , Empalmosomas , Humanos , Empalmosomas/genética , Redes Reguladoras de Genes , Trastornos del Neurodesarrollo/genética , Mutación Missense , Empalme del ARN , Factores de Empalme de ARN/genética , Proteínas Nucleares/genética , Enzimas Reparadoras del ADN/genética
5.
Mol Genet Genomic Med ; 11(6): e2154, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840359

RESUMEN

BACKGROUND: Congenital myasthenic syndromes (CMSs) are characterized by hypotonia, episodic apnea, muscle weakness, ptosis and generalized fatigability. CMS type 20 (CMS20) is a rare disorder caused by variants in SLC5A7. In contrast to most other CMSs, CMS20 is also associated with neurodevelopmental disorders (NDDs). Only 19 patients from 14 families have been reported so far. METHODS: We studied a 12-year-old boy with symptoms manifested at six weeks of age. Later, he also showed speech delay, moderate intellectual disability and autism. Analysis of CMS genes known at the time of clinical diagnosis yielded no results. Trio exome sequencing (ES) was performed. RESULTS: ES revealed compound heterozygosity for two SLC5A7 variants, p.(Asn431Lys) and p.(Ile291Thr). While the first variant was absent from all databases, the second variant has already been described in one patient. In silico analysis of known pathogenic SLC5A7 variants showed that variants with a higher predicted deleteriousness may be associated with earlier onset and increased severity of neuromuscular manifestations. CONCLUSION: Our patient confirms that CMS20 can be associated with NDDs. The study illustrates the strength of ES in deciphering the genetic basis of rare diseases, contributes to characterization of CMS20 and suggests trends in genotype-phenotype correlation in CMS20.


Asunto(s)
Discapacidad Intelectual , Síndromes Miasténicos Congénitos , Simportadores , Masculino , Humanos , Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/diagnóstico , Mutación Missense , Heterocigoto , Discapacidad Intelectual/complicaciones , Estudios de Asociación Genética , Simportadores/genética
6.
Genet Med ; 23(7): 1234-1245, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33824499

RESUMEN

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Mutación Missense , Fenotipo
7.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894126

RESUMEN

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Hidrolasas/química , Hidrolasas/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico por imagen , Tubulina (Proteína)/metabolismo , Adulto Joven
8.
Nat Commun ; 11(1): 4932, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004838

RESUMEN

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Asunto(s)
Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Unión a CCCTC/genética , Estudios de Casos y Controles , Estudios de Cohortes , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Canal de Potasio KCNQ3/genética , Masculino , Mutación , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...