Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Am Thorac Soc ; 16(10): 1207-1214, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31573344

RESUMEN

Air quality data from satellites and low-cost sensor systems, together with output from air quality models, have the potential to augment high-quality, regulatory-grade data in countries with in situ monitoring networks and provide much-needed air quality information in countries without them. Each of these technologies has strengths and limitations that need to be considered when integrating them to develop a robust and diverse global air quality monitoring network. To address these issues, the American Thoracic Society, the U.S. Environmental Protection Agency, the National Aeronautics and Space Administration, and the National Institute of Environmental Health Sciences convened a workshop in May 2017 to bring together global experts from across multiple disciplines and agencies to discuss current and near-term capabilities to monitor global air pollution. The participants focused on four topics: 1) current and near-term capabilities in air pollution monitoring, 2) data assimilation from multiple technology platforms, 3) critical issues for air pollution monitoring in regions without a regulatory-quality stationary monitoring network, and 4) risk communication and health messaging. Recommendations for research and improved use were identified during the workshop, including a recognition that the integration of data across monitoring technology groups is critical to maximizing the effectiveness (e.g., data accuracy, as well as spatial and temporal coverage) of these monitoring technologies. Taken together, these recommendations will advance the development of a global air quality monitoring network that takes advantage of emerging technologies to ensure the availability of free, accessible, and reliable air pollution data and forecasts to health professionals, as well as to all global citizens.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Imágenes Satelitales/instrumentación , Contaminantes Atmosféricos/análisis , Humanos , Material Particulado/análisis , Atención al Paciente , Sociedades Médicas , Estados Unidos
2.
Atmosphere (Basel) ; 8(10): 182, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093969

RESUMEN

The US Environmental Protection Agency (EPA) and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes) readings from mobile and handheld air sensors with the longer duration averages (hours to days) associated with the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants-particulate matter (PM), ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs) where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG) was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement.

4.
J Air Waste Manag Assoc ; 67(4): 462-474, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27808658

RESUMEN

Air quality sensors are becoming increasingly available to the general public, providing individuals and communities with information on fine-scale, local air quality in increments as short as 1 min. Current health studies do not support linking 1-min exposures to adverse health effects; therefore, the potential health implications of such ambient exposures are unclear. The U.S. Environmental Protection Agency (EPA) establishes the National Ambient Air Quality Standards (NAAQS) and Air Quality Index (AQI) on the best science available, which typically uses longer averaging periods (e.g., 8 hr; 24 hr). Another consideration for interpreting sensor data is the variable relationship between pollutant concentrations measured by sensors, which are short-term (1 min to 1 hr), and the longer term averages used in the NAAQS and AQI. In addition, sensors often do not meet federal performance or quality assurance requirements, which introduces uncertainty in the accuracy and interpretation of these readings. This article describes a statistical analysis of data from regulatory monitors and new real-time technology from Village Green benches to inform the interpretation and communication of short-term air sensor data. We investigate the characteristics of this novel data set and the temporal relationships of short-term concentrations to 8-hr average (ozone) and 24-hr average (PM2.5) concentrations to examine how sensor readings may relate to the NAAQS and AQI categories, and ultimately to inform breakpoints for sensor messages. We consider the empirical distributions of the maximum 8-hr averages (ozone) and 24-hr averages (PM2.5) given the corresponding short-term concentrations, and provide a probabilistic assessment. The result is a robust, empirical comparison that includes events of interest for air quality exceedances and public health communication. Concentration breakpoints are developed for short-term sensor readings such that, to the extent possible, the related air quality messages that are conveyed to the public are consistent with messages related to the NAAQS and AQI. IMPLICATIONS: Real-time sensors have the potential to provide important information about fine-scale current air quality and local air quality events. The statistical analysis of short-term regulatory and sensor data, coupled with policy considerations and known health effects experienced over longer averaging times, supports interpretation of such short-term data and efforts to communicate local air quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Ozono/análisis , Material Particulado/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/instrumentación , Humanos , Salud Pública/normas , Estados Unidos , United States Environmental Protection Agency/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...