Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 67: 102928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866163

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.


Asunto(s)
Adenosina , Óxido Nítrico , Humanos , Metilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(18): e2200143119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476525

RESUMEN

There is currently no effective treatment for pancreatic ductal adenocarcinoma (PDAC). While palliative chemotherapy offers a survival benefit to most patients, nearly all will eventually progress on treatment and long-term survivability remains poor. Given the lack of subsequent line treatment options, in this study, we sought to identify novel strategies to prevent, delay, or overcome resistance to gemcitabine, one of the most widely used medications in PDAC. Using a combination of single-cell RNA sequencing and high-throughput proteomic analysis, we identified a subset of gemcitabine-resistant tumor cells enriched for calcium/calmodulin signaling. Pharmacologic inhibition of calcium-dependent calmodulin activation led to the rapid loss of drug-resistant phenotypes in vitro, which additional single-cell RNA sequencing identified was due to impaired activation of the RAS/ERK signaling pathway. Consistent with these observations, calcium chelation or depletion of calcium in the culture media also impaired ERK activation in gemcitabine-resistant cells, and restored therapeutic responses to gemcitabine in vitro. We observed similar results using calcium channel blockers (CCBs) such as amlodipine, which inhibited prosurvival ERK signaling in vitro and markedly enhanced therapeutic responses to gemcitabine in both orthotopic xenografts and transgenic models of PDAC. Combined, these results offer insight into a potential means of gemcitabine resistance and suggest that select CCBs may provide a clinical benefit to PDAC patients receiving gemcitabine-based chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Amlodipino/farmacología , Amlodipino/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Calmodulina , Desoxicitidina/análogos & derivados , Humanos , Neoplasias Pancreáticas/patología , Estados Unidos , Gemcitabina , Neoplasias Pancreáticas
3.
Nat Commun ; 12(1): 1628, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712615

RESUMEN

Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.


Asunto(s)
Resistencia a Antineoplásicos/genética , Tolerancia a Medicamentos/genética , Tolerancia a Medicamentos/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Combinación de Medicamentos , Descubrimiento de Drogas , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células U937
4.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073164

RESUMEN

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Asunto(s)
Ciclina E/genética , Endotelio Vascular/fisiopatología , Endotoxemia/patología , Proteínas HMGB/metabolismo , Proteínas Oncogénicas/genética , Regeneración/inmunología , Factores de Transcripción SOXF/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Ciclina E/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Endotoxemia/inmunología , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/fisiología , Regulación hacia Arriba
5.
Thorax ; 74(6): 579-591, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30723184

RESUMEN

INTRODUCTION: Dysregulated sphingolipid metabolism has been implicated in the pathogenesis of various pulmonary disorders. Nuclear sphingosine-1-phosphate (S1P) has been shown to regulate histone acetylation, and therefore could mediate pro-inflammatory genes expression. METHODS: Profile of sphingolipid species in bronchoalveolar lavage fluids and lung tissue of mice challenged with Pseudomonas aeruginosa (PA) was investigated. The role of nuclear sphingosine kinase (SPHK)2 and S1P in lung inflammatory injury by PA using genetically engineered mice was determined. RESULTS: Genetic deletion of Sphk2, but not Sphk1, in mice conferred protection from PA-mediated lung inflammation. PA infection stimulated phosphorylation of SPHK2 and its localisation in epithelial cell nucleus, which was mediated by protein kinase C (PKC) δ. Inhibition of PKC δ or SPHK2 activity reduced PA-mediated acetylation of histone H3 and H4, which was necessary for the secretion of pro-inflammatory cytokines, interleukin-6 and tumour necrosis factor-α. The clinical significance of the findings is supported by enhanced nuclear localisation of p-SPHK2 in the epithelium of lung specimens from patients with cystic fibrosis (CF). CONCLUSIONS: Our studies define a critical role for nuclear SPHK2/S1P signalling in epigenetic regulation of bacterial-mediated inflammatory lung injury. Targeting SPHK2 may represent a potential strategy to reduce lung inflammatory pulmonary disorders such as pneumonia and CF.


Asunto(s)
Lesión Pulmonar/genética , Lesión Pulmonar/microbiología , Lisofosfolípidos/metabolismo , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Esfingosina/análogos & derivados , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Epigénesis Genética , Inflamación/genética , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Esfingosina/metabolismo
6.
Cell Death Dis ; 9(2): 84, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367668

RESUMEN

Honokiol is a natural product and an emerging drug for a wide variety of malignancies, including hematopoietic malignancies, sarcomas, and common epithelial tumors. The broad range of activity of honokiol against numerous malignancies with diverse genetic backgrounds suggests that honokiol is inhibiting an activity that is common to multiple malignancies. Oncogenic transcription factor FOXM1 is one of the most overexpressed oncoproteins in human cancer. Here we found that honokiol inhibits FOXM1-mediated transcription and FOXM1 protein expression. More importantly, we found that honokiol's inhibitory effect on FOXM1 is a result of binding of honokiol to FOXM1. This binding is specific to honokiol, a dimerized allylphenol, and was not observed in compounds that either were monomeric allylphenols or un-substituted dihydroxy phenols. This indicates that both substitution and dimerization of allylphenols are required for physical interaction with FOXM1. We thus demonstrate a novel and specific mechanism for FOXM1 inhibition by honokiol, which partially may explain its anticancer activity in cancer cells.


Asunto(s)
Compuestos de Bifenilo/farmacología , Proteína Forkhead Box M1/antagonistas & inhibidores , Lignanos/farmacología , Animales , Compuestos de Bifenilo/química , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Lignanos/química , Ratones , Inhibidores de Proteasoma/farmacología , Activación Transcripcional/efectos de los fármacos
7.
Clin Epigenetics ; 8: 17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26884818

RESUMEN

BACKGROUND: We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA). RESULTS: DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity. CONCLUSIONS: Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when evaluated on independent set of samples, with different racioethnic distribution, thus providing evidence that this set of DNA methylation biomarkers will likely generalize to prospective patient samples.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Receptores de Estrógenos/fisiología , Receptores de Progesterona/fisiología , Anciano , Neoplasias de la Mama/fisiopatología , Islas de CpG/genética , Epigénesis Genética , Femenino , Marcadores Genéticos , Humanos , Persona de Mediana Edad , Receptores de Estrógenos/genética , Receptores de Progesterona/genética
8.
Genes Dev ; 29(17): 1817-34, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314709

RESUMEN

The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mitocondrias/enzimología , Mitocondrias/genética , Proteína de Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , Ratones , Proteínas Mitocondriales/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteína de Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Cancer Res ; 75(4): 619-23, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25634216

RESUMEN

The family of E2F transcription factors is the key downstream target of the retinoblastoma tumor suppressor protein (pRB), which is frequently inactivated in human cancer. E2F is best known for its role in cell-cycle regulation and triggering apoptosis. However, E2F binds to thousands of genes and, thus, could directly influence a number of biologic processes. Given the plethora of potential E2F targets, the major challenge in the field is to identify specific processes in which E2F plays a functional role and the contexts in which a particular subset of E2F targets dictates a biologic outcome. Recent studies implicated E2F in regulation of expression of mitochondria-associated genes. The loss of such regulation results in severe mitochondrial defects. The consequences become evident during irradiation-induced apoptosis, where E2F-deficient cells are insensitive to cell death despite induction of canonical apoptotic genes. Thus, this novel function of E2F may have a major impact on cell viability, and it is independent of induction of apoptotic genes. Here, we discuss the implications of these findings in cancer biology.


Asunto(s)
Factores de Transcripción E2F/genética , Mitocondrias/genética , Neoplasias/genética , Proteína de Retinoblastoma/genética , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Supervivencia Celular/genética , Factores de Transcripción E2F/biosíntesis , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/patología , Neoplasias/patología , Proteína de Retinoblastoma/biosíntesis , Proteína de Retinoblastoma/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
10.
Dev Cell ; 27(4): 438-51, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24286825

RESUMEN

E2F/DP transcription factors regulate cell proliferation and apoptosis. Here, we investigated the mechanism of the resistance of Drosophila dDP mutants to irradiation-induced apoptosis. Contrary to the prevailing view, this is not due to an inability to induce the apoptotic transcriptional program, because we show that this program is induced; rather, this is due to a mitochondrial dysfunction of dDP mutants. We attribute this defect to E2F/DP-dependent control of expression of mitochondria-associated genes. Genetic attenuation of several of these E2F/DP targets mimics the dDP mutant mitochondrial phenotype and protects against irradiation-induced apoptosis. Significantly, the role of E2F/DP in the regulation of mitochondrial function is conserved between flies and humans. Thus, our results uncover a role of E2F/DP in the regulation of mitochondrial function and demonstrate that this aspect of E2F regulation is critical for the normal induction of apoptosis in response to irradiation.


Asunto(s)
Apoptosis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción E2F/metabolismo , Mitocondrias/patología , Osteosarcoma/patología , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Ciclo Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factores de Transcripción E2F/genética , Técnica del Anticuerpo Fluorescente , Rayos gamma , Humanos , Técnicas para Inmunoenzimas , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fenotipo , Transactivadores/genética , Factores de Transcripción , Células Tumorales Cultivadas
11.
Mol Cell Biol ; 33(19): 3951-61, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918806

RESUMEN

Global changes in the epigenome are increasingly being appreciated as key events in cancer progression. The pathogenic role of enhancer of zeste homolog 2 (EZH2) has been connected to its histone 3 lysine 27 (H3K27) methyltransferase activity and gene repression; however, little is known about relationship of changes in expression of EZH2 target genes to cancer characteristics and patient prognosis. Here we show that through expression analysis of genomic regions with H3K27 trimethylation (H3K27me3) and EZH2 binding, breast cancer patients can be stratified into good and poor prognostic groups independent of known cancer gene signatures. The EZH2-bound regions were downregulated in tumors characterized by aggressive behavior, high expression of cell cycle genes, and low expression of developmental and cell adhesion genes. Depletion of EZH2 in breast cancer cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.


Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Complejo Represivo Polycomb 2/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Transición Epitelial-Mesenquimal/genética , Femenino , Células HEK293 , Histonas/metabolismo , Humanos , Immunoblotting , Estimación de Kaplan-Meier , Células MCF-7 , Metilación , Modelos Genéticos , Complejo Represivo Polycomb 2/metabolismo , Pronóstico , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Proc Natl Acad Sci U S A ; 109(45): 18499-504, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23093672

RESUMEN

Epigenetic regulation underlies the robust changes in gene expression that occur during development. How precisely epigenetic enzymes contribute to development and differentiation processes is largely unclear. Here we show that one of the enzymes that removes the activating epigenetic mark of trimethylated lysine 4 on histone H3, lysine (K)-specific demethylase 5A (KDM5A), reinforces the effects of the retinoblastoma (RB) family of transcriptional repressors on differentiation. Global location analysis showed that KDM5A cooccupies a substantial portion of target genes with the E2F4 transcription factor. During ES cell differentiation, knockout of KDM5A resulted in derepression of multiple genomic loci that are targets of KDM5A, denoting a direct regulatory function. In terminally differentiated cells, common KDM5A and E2F4 gene targets were bound by the pRB-related protein p130, a DREAM complex component. KDM5A was recruited to the transcription start site regions independently of E2F4; however, it cooperated with E2F4 to promote a state of deepened repression at cell cycle genes during differentiation. These findings reveal a critical role of H3K4 demethylation by KDM5A in the transcriptional silencing of genes that are suppressed by RB family members in differentiated cells.


Asunto(s)
Diferenciación Celular/genética , Factor de Transcripción E2F4/metabolismo , Genes cdc/genética , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Animales , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Unión Proteica , Células U937
13.
Cell Rep ; 1(6): 715-29, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22813746

RESUMEN

Elevated expression of FoxM1 in breast cancer correlates with an undifferentiated tumor phenotype and a negative clinical outcome. However, a role for FoxM1 in regulating mammary differentiation was not known. Here, we identify another function of FoxM1, the ability to act as a transcriptional repressor, which plays an important role in regulating the differentiation of luminal epithelial progenitors. Regeneration of mammary glands with elevated levels of FoxM1 leads to aberrant ductal morphology and expansion of the luminal progenitor pool. Conversely, knockdown of FoxM1 results in a shift toward the differentiated state. FoxM1 mediates these effects by repressing the key regulator of luminal differentiation, GATA-3. Through association with DNMT3b, FoxM1 promotes methylation of the GATA-3 promoter in an Rb-dependent manner. This study identifies FoxM1 as a critical regulator of mammary differentiation with significant implications for the development of aggressive breast cancers.


Asunto(s)
Linaje de la Célula , Factores de Transcripción Forkhead/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Animales , Secuencia de Bases , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN/genética , Femenino , Proteína Forkhead Box M1 , Factor de Transcripción GATA3/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Embarazo , Regiones Promotoras Genéticas/genética , Proteína de Retinoblastoma/metabolismo , Transcripción Genética , ADN Metiltransferasa 3B
14.
PLoS One ; 6(8): e24023, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21886846

RESUMEN

Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.


Asunto(s)
Epigénesis Genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Neoplasias/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Metiltransferasas , Humanos , Neoplasias/enzimología
15.
Proc Natl Acad Sci U S A ; 108(33): 13379-86, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21788502

RESUMEN

Aberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB). Here, we show that genetic ablation of Rbp2 decreases tumor formation and prolongs survival in Rb1(+/-) mice and Men1-defective mice. These studies link RBP2 histone demethylase activity to tumorigenesis and nominate RBP2 as a potential target for cancer therapy.


Asunto(s)
Neoplasias/prevención & control , Proteínas Proto-Oncogénicas/deficiencia , Proteína de Retinoblastoma/deficiencia , Proteínas Celulares de Unión al Retinol/deficiencia , Animales , Inhibidores Enzimáticos/uso terapéutico , Epigenómica , Histona Demetilasas , Histonas/metabolismo , Metilación , Ratones , Ratones Noqueados , Neoplasias/enzimología , Neoplasias/etiología , Proteínas Celulares de Unión al Retinol/antagonistas & inhibidores , Tasa de Supervivencia
16.
Cell Cycle ; 10(3): 413-24, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21270517

RESUMEN

Histones are post-translationally modified by multiple histone-modifying enzymes, which in turn influences gene expression. Much of the work in the field to date has focused on genetic, biochemical and structural characterization of these enzymes. The most recent genome-wide methods provide insights into specific recruitment of histone-modifying enzymes in vivo and, therefore, onto mechanisms of establishing a differential expression pattern. Here we focus on the recruitment mechanisms of the enzymes involved in the placement of two contrasting histone marks, histone H3 lysine 4 (H3K4) methylation and histone H3 lysine 27 (H3K27) methylation. We describe distribution of their binding sites and show that recruitment of different histone-modifying proteins can be coordinated, opposed, or alternating. Specifically, genomic sites of the H3K4 histone demethylase KDM5A become accessible to its homolog KDM5B in cells with a lowered KDM5A level. The currently available data on recruitment of H3K4/H3K27 modifying enzymes suggests that the formed protein complexes are targeted in a sequential and temporal manner, but that additional, still unknown, interactions contribute to targeting specificity.


Asunto(s)
Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Sitios de Unión , Línea Celular , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Regulación de la Expresión Génica , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/química , Humanos , Histona Demetilasas con Dominio de Jumonji/fisiología , Lisina/química , Lisina/metabolismo , Metilación , Ratones , Modelos Genéticos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Proteínas Represoras/fisiología , Proteína 2 de Unión a Retinoblastoma/fisiología , Transcripción Genética
17.
J Vis Exp ; (41)2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20644511

RESUMEN

Recruitment of transcriptional and epigenetic factors to their targets is a key step in their regulation. Prominently featured in recruitment are the protein domains that bind to specific histone modifications. One such domain is the plant homeodomain (PHD), found in several chromatin-binding proteins. The epigenetic factor RBP2 has multiple PHD domains, however, they have different functions (Figure 4). In particular, the C-terminal PHD domain, found in a RBP2 oncogenic fusion in human leukemia, binds to trimethylated lysine 4 in histone H3 (H3K4me3). The transcript corresponding to the RBP2 isoform containing the C-terminal PHD accumulates during differentiation of promonocytic, lymphoma-derived, U937 cells into monocytes. Consistent with both sets of data, genome-wide analysis showed that in differentiated U937 cells, the RBP2 protein gets localized to genomic regions highly enriched for H3K4me3. Localization of RBP2 to its targets correlates with a decrease in H3K4me3 due to RBP2 histone demethylase activity and a decrease in transcriptional activity. In contrast, two other PHDs of RBP2 are unable to bind H3K4me3. Notably, the C-terminal domain PHD of RBP2 is absent in the smaller RBP2 isoform. It is conceivable that the small isoform of RBP2, which lacks interaction with H3K4me3, differs from the larger isoform in genomic location. The difference in genomic location of RBP2 isoforms may account for the observed diversity in RBP2 function. Specifically, RBP2 is a critical player in cellular differentiation mediated by the retinoblastoma protein (pRB). Consistent with these data, previous genome-wide analysis, without distinction between isoforms, identified two distinct groups of RBP2 target genes: 1) genes bound by RBP2 in a manner that is independent of differentiation; 2) genes bound by RBP2 in a differentiation-dependent manner. To identify differences in localization between the isoforms we performed genome-wide location analysis by ChIP-Seq. Using antibodies that detect both RBP2 isoforms we have located all RBP2 targets. Additionally we have antibodies that only bind large, and not small RBP2 isoform (Figure 4). After identifying the large isoform targets, one can then subtract them from all RBP2 targets to reveal the targets of small isoform. These data show the contribution of chromatin-interacting domain in protein recruitment to its binding sites in the genome.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Genoma Humano , Proteínas Celulares de Unión al Retinol/genética , Humanos , Estructura Terciaria de Proteína , Células U937
18.
PLoS Genet ; 6(4): e1000918, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421993

RESUMEN

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Retina/metabolismo , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción/genética , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo
19.
Mol Cell ; 31(4): 520-530, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18722178

RESUMEN

Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters.


Asunto(s)
Diferenciación Celular/genética , Genoma Humano/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica , Humanos , Metilación , Mitocondrias/enzimología , Modelos Biológicos , Nucleosomas/enzimología , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Retinoblastoma , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
20.
Biochem Cell Biol ; 85(4): 435-43, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17713579

RESUMEN

Lysine histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. The methylation of Lys4 of histone H3 seems to be of particular significance. It is associated with active regions of the genome, and in Drosophila it is catalyzed by trithorax-group proteins that have become paradigms of developmental regulators at the level of chromatin. Like other histone methylation events, H3K4 methylation was considered irreversible until the identification of a large number of histone demethylases indicated that demethylation events play an important role in histone modification dynamics. However, the described demethylases had no strictly assigned biological functions and the identity of the histone demethylases that would contribute to the epigenetic changes specifying certain biological processes was unknown. Recently, several groups presented evidence that a family of 4 JmjC domain proteins results in the global changes of histone demethylation, and in elegant studies using model organisms, they demonstrated the importance of this family of histone demethylases in cell fate determination. All 4 proteins possess the demethylase activity specific to H3K4 and belong to the poorly described JARID1 protein family.


Asunto(s)
Diferenciación Celular/fisiología , Histonas/metabolismo , Lisina/metabolismo , Animales , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/clasificación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma , Proteínas Supresoras de Tumor/clasificación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA