Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834177

RESUMEN

Basic fibroblast growth factor (FGF-2) is a highly labile protein with strong potential for tissue engineering. The aim of this study was to develop FGF-2 formulations that are stable against physical stressors encountered in pharmaceutical processing and evaluation. Pharmaceutical excipients, alone or in combination, were added to aqueous FGF-2 (770 ng/mL) solution and the stability of the resulting solutions on storage at 4-37 °C was evaluated. Stability of the solutions to repeated freeze-thaw cycles and lyophilisation was also evaluated, as well as the stability of the lyophilised stabilised protein to storage at -4, 4 and 18 °C for up to 12 months. In all of these experiments FGF-2 was quantified by ELISA assay. The as-received FGF-2, when dissolved in water, was highly unstable, retaining only 50% of baseline protein content after 30 min at 37 °C or 1 h at 25 °C. By contrast, FGF-2 solutions prepared with 0.5% w/v methylcellulose (MC) and 20 mM alanine (formulation F5) or with 0.5% w/v MC and 1 mg/mL human serum albumin (HSA) (formulation F6) were highly stable, having residual FGF-2 content comparable to baseline levels even after 2 h at 37 °C and 5 h at 25 °C. F5 and F6 were also highly stable to repeated freeze-thaw cycles, with >99% of FGF-2 load remaining after the third cycle. In addition, F5 and F6 were stable to lyophilisation, and the lyophilised products could be stored at -4, 4 or 18 °C for at least 12 months, with less than 1% loss in mean FGF-2 content. Thus, FGF-2 solution is effectively stabilised against both thermal and processing stressors in the presence of MC and alanine (F5), or MC and HSA (F6). The resultant FGF-2 solutions may be applied as medicinal products or further processed into more advanced medicinal products, e.g., scaffolds, for wound healing and tissue regeneration.

2.
Theranostics ; 9(15): 4354-4374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285766

RESUMEN

Gestational trophoblastic neoplasia (GTN), the most aggressive form of which is choriocarcinoma, can result from over-proliferation of trophoblasts. Treating choriocarcinoma requires high doses of systemic chemotherapeutic agents, which result in nonspecific drug distribution and severe toxicity. To overcome these disadvantages and enhance chemotherapeutic efficacy, we synthesized redox- and pH-sensitive, self-assembling, ascorbic acid-derived (PEG-ss-aAPP) micelles to deliver the drug methotrexate (MTX). Methods: We developed and tested self-assembling PEG-ss-aAPP micelles, which release their drug cargo in response to an intracellular reducing environment and the acidity of the early lysosome or tumoral microenvironment. Uptake into JEG3 choriocarcinoma cancer cells was examined using confocal microscopy and transmission electron microscopy. We examined the ability of MTX-loaded PEG-ss-aAPP micelles to inhibit metastasis in an orthotopic mouse model of human choriocarcinoma. Results: Drug-loaded micelles had encapsulation efficiency above 95%. Particles were spherical based on transmission electron microscopy, with diameters of approximately 229.0 nm based on dynamic light scattering. The drug carrier responded sensitively to redox and pH changes, releasing its cargo in specific environments. PEG-ss-aAPP/MTX micelles efficiently escaped from lysosome/endosomes, and they were effective at producing reactive oxygen species, strongly inducing apoptosis and inhibiting invasion and migration. These effects correlated with the ability of PEG-ss-aAPP/MTX micelles to protect IκBα from degradation, which in turn inhibited translocation of NF-κB p65 to the nucleus. In an orthotopic mouse model of human choriocarcinoma, PEG-ss-aAPP/MTX micelles strongly inhibited primary tumor growth and significantly suppressed metastasis without obvious side effects. Conclusions: Our results highlight the potential of PEG-ss-aAPP micelles for targeted delivery of chemotherapeutic agents against choriocarcinoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Ácido Ascórbico/química , Coriocarcinoma/tratamiento farmacológico , Coriocarcinoma/patología , Metotrexato/uso terapéutico , Micelas , FN-kappa B/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Liberación de Fármacos , Glutatión/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metotrexato/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Oxidación-Reducción , Polietilenglicoles/química , Espectroscopía de Protones por Resonancia Magnética , Especies Reactivas de Oxígeno/metabolismo , Succinimidas/química , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...