Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12475, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864200

RESUMEN

Besides the standard parameters used for colorectal cancer (CRC) management, new features are needed in clinical practice to improve progression-free and overall survival. In some cancers, the microenvironment mechanical properties can contribute to cancer progression and metastasis formation, or constitute a physical barrier for drug penetration or immune cell infiltration. These mechanical properties remain poorly known for colon tissues. Using a multidisciplinary approach including clinical data, physics and geostatistics, we characterized the stiffness of healthy and malignant colon specimens. For this purpose, we analyzed a prospective cohort of 18 patients with untreated colon adenocarcinoma using atomic force microscopy to generate micrometer-scale mechanical maps. We characterized the stiffness of normal epithelium samples taken far away or close to the tumor area and selected tumor tissue areas. These data showed that normal epithelium was softer than tumors. In tumors, stroma areas were stiffer than malignant epithelial cell areas. Among the clinical parameters, tumor left location, higher stage, and RAS mutations were associated with increased tissue stiffness. Thus, in patients with CRC, measuring tumor tissue rigidity may have a translational value and an impact on patient care.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Neoplasias Colorrectales , Adenocarcinoma/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Estudios Prospectivos , Microambiente Tumoral
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445169

RESUMEN

Tetraspanins are a family of transmembrane proteins that form a network of protein-protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Gangliósidos/metabolismo , Proteína Kangai-1/metabolismo , Tetraspanina 28/metabolismo , Membrana Celular/química , Células Cultivadas , Células Epiteliales/química , Células Epiteliales/citología , Gangliósidos/análisis , Humanos , Proteína Kangai-1/análisis , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Tetraspanina 28/análisis
3.
Cells ; 10(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207462

RESUMEN

The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular/fisiología , Proteína Kangai-1/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias/metabolismo , Fibras de Estrés/metabolismo , Tetraspaninas/metabolismo , Caveolina 1/metabolismo , Adhesión Celular/fisiología , Línea Celular , Línea Celular Tumoral , Humanos , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
4.
Sci Rep ; 11(1): 5752, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707576

RESUMEN

Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiomotinas/metabolismo , Neoplasias de la Mama/prevención & control , Carcinogénesis/patología , Moléculas de Adhesión Celular/metabolismo , Guanilato-Quinasas/metabolismo , Transducción de Señal , Estrés Fisiológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinogénesis/metabolismo , Moléculas de Adhesión Celular/deficiencia , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Guanilato-Quinasas/deficiencia , Humanos , Fenotipo , Unión Proteica , Proteínas Señalizadoras YAP/metabolismo , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
5.
Mol Cell Oncol ; 3(4): e1182241, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27652326

RESUMEN

ERBB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) amplification is associated with invasive breast cancer. We discovered that TOM1L1 (target of myb1-like 1) and ERBB2 co-amplification defines a novel mechanism involved in breast cancer metastatic progression. Upregulation of the vesicular trafficking protein TOM1L1 enhances plasma membrane delivery of membrane-type 1 matrix metalloprotease (MT1-MMP) for efficient extracellular matrix degradation and tumor cell dissemination.

6.
Nat Commun ; 7: 10765, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26899482

RESUMEN

ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2(+)/ER(+) tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Receptor ErbB-2/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Invasividad Neoplásica
7.
Am J Cancer Res ; 5(6): 1972-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26269757

RESUMEN

Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

8.
PLoS One ; 10(3): e0118854, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803821

RESUMEN

The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN) breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Comunicación Autocrina , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/genética , Pirimidinas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
9.
Am J Cancer Res ; 2(4): 357-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22860228

RESUMEN

The non-receptor tyrosine kinases of the SRC family (SFK) play important roles in signal transduction induced by a large variety of extracellular stimuli, including growth factors and Integrins. When deregulated, SFKs show oncogenic activity, as originally reported for v-Src, the transforming product of the avian retrovirus RSV, and then, in many human cancers, particularly colorectal cancer (CRC). In CRC, SFK deregulation largely occurs in the absence of mutations of the corresponding genes, but the underlying molecular mechanisms involved are still unclear. In addition to a role in early tumor progression, SFK deregulation may also be important in advanced CRC, as suggested by the association between increased SFK activity and poor clinical outcome. However, SFK contribution to CRC metastasis formation is still poorly documented. Here, we will review recent findings that broaden our understanding of the mechanisms underlying SFK deregulation and signaling in advanced CRC. We will also discuss the implication of these observations for SFK-based therapy in metastatic CRC.

10.
J Cell Sci ; 122(Pt 21): 3966-72, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19825940

RESUMEN

It remains unclear how GPI-anchored proteins (GPIAPs), which lack cytoplasmic domains, transduce signals triggered by specific ligation. Such signal transduction has been speculated to require the ligated GPIAP to associate with membrane-spanning proteins that communicate with obligate cytoplasmic proteins. Transient anchorage of crosslinked proteins on the cell surface was previously characterized by single-particle tracking, and temporary association with the actin cytoskeleton was hypothesized to cause regulated anchorage. GPIAPs, such as Thy-1, require clustering, cholesterol and Src-family kinase (SFK) activity to become transiently anchored. By contrast, a transmembrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which has a PDZ-binding motif in its cytoplasmic C-terminus that binds the ERM adaptor EBP50, exhibits anchorage that strictly requires EBP50 but has little dependence on cholesterol or SFK. We hypothesized that a transmembrane protein would be required to mediate the linkage between Thy-1 and the cytoskeleton. Here, we present evidence, obtained by shRNA knockdown, that the transmembrane protein Csk-binding protein (CBP) plays an obligatory role in the transient anchorage of Thy1. Furthermore, either a dominant-negative form of CBP that did not bind EBP50 or a dominant-negative EBP50 drastically reduced transient anchorage of Thy-1, indicating the involvement of this adaptor. Finally, we speculate on the role of phosphorylation in the regulation of transient anchorage.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Antígenos Thy-1/metabolismo , Animales , Línea Celular , Membrana Celular/genética , Citoesqueleto/genética , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Transporte de Proteínas , Antígenos Thy-1/genética
11.
Biol Cell ; 100(11): 617-31, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18851712

RESUMEN

c-Abl is a non-receptor tyrosine kinase which is localized both in the nucleus and cytoplasm, and is involved in the regulation of cell growth, survival and morphogenesis. Although c-Abl nuclear function has been extensively studied, recent data also indicate an important role in cytoplasmic signalling through mitogenic and adhesive receptors. Here, we review the mechanisms by which growth factors promote cytoplasmic c-Abl activation and signalling and its function in the induction of DNA synthesis, changes in cell morphology and receptor endocytosis. The importance of de-regulated c-Abl cytoplasmic signalling in solid tumours is also discussed.


Asunto(s)
Citoplasma/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Animales , Ciclo Celular , Transformación Celular Neoplásica/metabolismo , Citoplasma/química , Citoplasma/genética , Regulación de la Expresión Génica , Humanos , Neoplasias/fisiopatología , Neoplasias/terapia , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/genética
12.
J Cell Biol ; 182(3): 603-14, 2008 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-18695048

RESUMEN

Spatial regulation is an important feature of signal specificity elicited by cytoplasmic tyrosine kinases of the Src family (SRC family protein tyrosine kinases [SFK]). Cholesterol-enriched membrane domains, such as caveolae, regulate association of SFK with the platelet-derived growth factor receptor (PDGFR), which is needed for kinase activation and mitogenic signaling. PAG, a ubiquitously expressed member of the transmembrane adaptor protein family, is known to negatively regulate SFK signaling though binding to Csk. We report that PAG modulates PDGFR levels in caveolae and SFK mitogenic signaling through a Csk-independent mechanism. Regulation of SFK mitogenic activity by PAG requires the first N-terminal 97 aa (PAG-N), which include the extracellular and transmembrane domains, palmitoylation sites, and a short cytoplasmic sequence. We also show that PAG-N increases ganglioside GM1 levels at the cell surface and, thus, displaces PDGFR from caveolae, a process that requires the ganglioside-specific sialidase Neu-3. In conclusion, PAG regulates PDGFR membrane partitioning and SFK mitogenic signaling by modulating GM1 levels within caveolae independently from Csk.


Asunto(s)
Gangliósido G(M1)/metabolismo , Proteínas de la Membrana/metabolismo , Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proteína Tirosina Quinasa CSK , Caveolas/efectos de los fármacos , Caveolas/ultraestructura , ADN/biosíntesis , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Neuraminidasa/metabolismo , Fosfoproteínas/química , Unión Proteica/efectos de los fármacos , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Familia-src Quinasas
13.
Mol Cell Biol ; 27(21): 7631-40, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17785434

RESUMEN

Compartmentalization of Src tyrosine kinases (SFK) plays an important role in signal transduction induced by a number of extracellular stimuli. For example, Src mitogenic signaling induced by platelet-derived growth factor (PDGF) is initiated in cholesterol-enriched microdomain caveolae. How this Src subcellular localization is regulated is largely unknown. Here we show that the Tom1L1-clathrin heavy chain (CHC) complex negatively regulates the level of SFK in caveolae needed for the induction of DNA synthesis. Tom1L1 is both an interactor and a substrate of SFK. Intriguingly, it stimulates Src activity without promoting mitogenic signaling. We found that, upon association with CHC, Tom1L1 reduced the level of SFK in caveolae, thereby preventing its association with the PDGF receptor, which is required for the induction of mitogenesis. Similarly, the Tom1L1-CHC complex reduced also the level of oncogenic Src in cholesterol-enriched microdomains, thus affecting both its capacity to induce DNA synthesis and cell transformation. Conversely, Tom1L1, when not associated with CHC, accumulated in caveolae and promoted Src-driven DNA synthesis. We concluded that the Tom1L1-CHC complex defines a novel mechanism involved in negative regulation of mitogenic and transforming signals, by modulating SFK partitioning at the plasma membrane.


Asunto(s)
Membrana Celular/enzimología , Transformación Celular Neoplásica , Cadenas Pesadas de Clatrina/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Caveolas/enzimología , ADN/biosíntesis , Células HeLa , Humanos , Ratones , Complejos Multiproteicos/metabolismo , Células 3T3 NIH , Transporte de Proteínas , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Familia-src Quinasas/química
14.
J Cell Sci ; 119(Pt 14): 2921-34, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16787943

RESUMEN

The mechanism by which the Src family of protein-tyrosine kinases (SFKs) regulate mitogenesis and morphological changes induced by platelet-derived growth factor (PDGF) is not well known. The cholesterol-enriched membrane microdomains, caveolae, regulate PDGF receptor signalling in fibroblasts and we examined their role in SFK functions. Here we show that caveolae disruption by membrane cholesterol depletion or expression of the dominant-negative caveolin-3 DGV mutant impaired Src mitogenic signalling including kinase activation, Myc gene induction and DNA synthesis. The impact of caveolae on SFK function was underscored by the capacity of Myc to overcome mitogenic inhibition as a result of caveolae disruption. Using biochemical fractionation we show that caveolae-enriched subcellular membranes regulate the formation of PDGF-receptor-SFK complexes. An additional pool of PDGF-activated SFKs that was insensitive to membrane cholesterol depletion was characterised in non-caveolae fractions. SFK activation outside caveolae was linked to the capacity of PDGF to induce F-actin rearrangements leading to dorsal ruffle formation. Inhibition of phospholipase C gamma (PLCgamma), sphingosine kinase and heterotrimeric Gi proteins implicates a PLC gamma-sphingosine-1-phosphate-Gi pathway for PDGF-induced SFK activation outside caveolae and actin assembly. In addition, the cytoplasmic tyrosine kinase Abl was identified as an important effector of this signalling cascade. We conclude that PDGF may stimulate two spatially distinct pools of SFKs leading to two different biological outcomes: DNA synthesis and dorsal ruffle formation.


Asunto(s)
Actinas/metabolismo , Replicación del ADN/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Familia-src Quinasas/metabolismo , Animales , Caveolas/metabolismo , Colesterol/deficiencia , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Lisofosfolípidos/metabolismo , Ratones , Modelos Biológicos , Células 3T3 NIH , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Biochem J ; 396(3): 461-8, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16536729

RESUMEN

Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation. These methods show that gelsolin can form high-affinity complexes with two calponin isoforms (basic h1 and acidic h3). They also show that gelsolin binds calponin through regions that have been identified previously as being calponin's actin-binding sites. Moreover, gelsolin does not interact with calponin while calponin is bound to F-actin. Reciprocal experiments to find calponin-binding sites on gelsolin show that these are in both the N- and C-terminal halves of gelsolin. Calponin has minimal effects on actin severing by gelsolin. In contrast, calponin markedly affects the nucleation activity of gelsolin. The maximum inhibition of nucleation by gelsolin was 50%, which was achieved with a ratio of two calponins for every gelsolin. Thus the interaction of calponin with gelsolin may play a regulatory role in the formation of actin filaments through modulation of gelsolin's actin-binding function and through the prevention of calponin's actin-binding activities.


Asunto(s)
Actinas/metabolismo , Proteínas de Unión al Calcio/química , Gelsolina/química , Proteínas de Microfilamentos/química , Animales , Células COS , Proteínas de Unión al Calcio/metabolismo , Chlorocebus aethiops , Colorantes Fluorescentes , Gelsolina/antagonistas & inhibidores , Humanos , Proteínas de Microfilamentos/metabolismo , Ratas , Espectrometría de Fluorescencia , Calponinas
16.
Eur J Biochem ; 271(13): 2615-23, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15206927

RESUMEN

The phosphorylation-dephosphorylation of serine and threonine residues of calponin is known to modulate in vitro its interaction with F-actin and is thought to regulate several biological processes in cells, involving either of the calponin isoforms. Here, we identify, for the first time, tyrosine-phosphorylated calponin h3 within COS 7 cells, before and after their transfection with the pSV vector containing cDNA encoding the cytoplasmic, Src-related, tyrosine kinase, Fyn. We then describe the specific tyrosine phosphorylation in vitro of calponin h1 and calponin h3 by this kinase. 32P-labeling of tyrosine residues was monitored by combined autoradiography, immunoblotting with a specific phosphotyrosine monoclonal antibody and dephosphorylation with the phosphotyrosine-specific protein phosphatase, YOP. PhosphorImager analyses showed the incorporation of maximally 1.4 and 2.0 mol of 32P per mol of calponin h3 and calponin h1, respectively. As a result, 75% and 68%, respectively, of binding to F-actin was lost by the phosphorylated calponins. Furthermore, F-actin, added at a two- or 10-fold molar excess, did not protect, but rather increased, the extent of 32P-labeling in both calponins. Structural analysis of the tryptic phosphopeptides from each 32P-labeled calponin revealed a single, major 32P-peptide in calponin h3, with Tyr261 as the phosphorylation site. Tyr261 was also phosphorylated in calponin h1, together with Tyr182. Collectively, the data point to the potential involvement, at least in living nonmuscle cells, of tyrosine protein kinases and the conserved Tyr261, located in the third repeat motif of the calponin molecule, in a new level of regulation of the actin-calponin interaction.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Tirosina/metabolismo , Actinas/metabolismo , Animales , Células COS , Electroforesis en Gel de Poliacrilamida , Proteínas de Microfilamentos , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-fyn , Conejos , Calponinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA