RESUMEN
BACKGROUND: The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling. METHODS: We measured PKA subunit expression in human heart and developed a conditional mouse model with cardiomyocyte-specific knockout of RIα (RIα-icKO). Myocardial structure and function were evaluated by echocardiography, histology, and ECG and in Langendorff-perfused hearts. PKA activity and cAMP levels were determined by immunoassay, and phosphorylation of PKA targets was assessed by Western blot. L-type Ca2+ current (ICa,L), sarcomere shortening, Ca2+ transients, Ca2+ sparks and waves, and subcellular cAMP were recorded in isolated ventricular myocytes (VMs). RESULTS: RIα protein was decreased by 50% in failing human heart with ischemic cardiomyopathy and by 75% in the ventricles and in VMs from RIα-icKO mice but not in atria or sinoatrial node. Basal PKA activity was increased ≈3-fold in RIα-icKO VMs. In young RIα-icKO mice, left ventricular ejection fraction was increased and the negative inotropic effect of propranolol was prevented, whereas heart rate and the negative chronotropic effect of propranolol were not modified. Phosphorylation of phospholamban, ryanodine receptor, troponin I, and cardiac myosin-binding protein C at PKA sites was increased in propranolol-treated RIα-icKO mice. Hearts from RIα-icKO mice were hypercontractile, associated with increased ICa,L, and [Ca2+]i transients and sarcomere shortening in VMs. These effects were suppressed by the PKA inhibitor, H89. Global cAMP content was decreased in RIα-icKO hearts, whereas local cAMP at the phospholamban/sarcoplasmic reticulum Ca2+ ATPase complex was unchanged in RIα-icKO VMs. RIα-icKO VMs had an increased frequency of Ca2+ sparks and proarrhythmic Ca2+ waves, and RIα-icKO mice had an increased susceptibility to ventricular tachycardia. On aging, RIα-icKO mice showed progressive contractile dysfunction, cardiac hypertrophy, and fibrosis, culminating in congestive heart failure with reduced ejection fraction that caused 50% mortality at 1 year. CONCLUSIONS: These results identify RIα as a key negative regulator of cardiac contractile function, arrhythmia, and pathological remodeling.
RESUMEN
The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.
Asunto(s)
Calcio , Miocitos Cardíacos , Molécula de Interacción Estromal 1 , Animales , Ratas , Transporte Biológico , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Homeostasis , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismoRESUMEN
FKBP12.6, a binding protein to the immunosuppressant FK506, which also binds the ryanodine receptor (RyR2) in the heart, has been proposed to regulate RyR2 function and to have antiarrhythmic properties. However, the level of FKBP12.6 expression in normal hearts remains elusive and some controversies still persist regarding its effects, both in basal conditions and during ß-adrenergic stimulation. We quantified FKBP12.6 in the left ventricles (LV) of WT (wild-type) mice and in two novel transgenic models expressing distinct levels of FKBP12.6, using a custom-made specific anti-FKBP12.6 antibody and a recombinant protein. FKBP12.6 level in WT LV was very low (0.16 ± 0.02 nmol/g of LV), indicating that <15% RyR2 monomers are bound to the protein. Mice with 14.1 ± 0.2 nmol of FKBP12.6 per g of LV (TG1) had mild cardiac hypertrophy and normal function and were protected against epinephrine/caffeine-evoked arrhythmias. The ventricular myocytes showed higher [Ca2+]i transient amplitudes than WT myocytes and normal SR-Ca2+ load, while fewer myocytes showed Ca2+ sparks. TG1 cardiomyocytes responded to 50 nM Isoproterenol increasing these [Ca2+]i parameters and producing RyR2-Ser2808 phosphorylation. Mice with more than twice the TG1 FKBP12.6 value (TG2) showed marked cardiac hypertrophy with calcineurin activation and more arrhythmias than WT mice during ß-adrenergic stimulation, challenging the protective potential of high FKBP12.6. RyR2R420Q CPVT mice overexpressing FKBP12.6 showed fewer proarrhythmic events and decreased incidence and duration of stress-induced bidirectional ventricular tachycardia. Our study, therefore, quantifies for the first time endogenous FKBP12.6 in the mouse heart, questioning its physiological relevance, at least at rest due its low level. By contrast, our work demonstrates that with caution FKBP12.6 remains an interesting target for the development of new antiarrhythmic therapies.
Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Proteínas de Unión a Tacrolimus , Animales , Ratones , Adrenérgicos , Antiarrítmicos/farmacología , Cardiomegalia , Incidencia , Miocitos Cardíacos , Taquicardia Ventricular/genéticaRESUMEN
Background: In addition to show autonomous beating rhythmicity, the physiological functions of the heart present daily periodic oscillations. Notably the ventricular repolarization itself varies throughout the circadian cycle which was mainly related to the periodic expression of K + channels. However, the involvement of the L-type Ca 2+ channel (Ca V 1.2 encoded by Cacna1c gene) in these circadian variations remains elusive. Methods: We used a transgenic mouse model (PCa-luc) that expresses the luciferase reporter under the control of the cardiac Cacna1c promoter and analyzed promoter activity by bioluminescent imaging, qPCR, immunoblot, Chromatin immunoprecipitation assay (ChIP) and Ca V 1.2 activity. Results: Under normal 12:12h light-dark cycle, we observed in vivo a biphasic diurnal variation of promoter activities peaking at 9 and 19.5 Zeitgeber time (ZT). This was associated with a periodicity of Cacna1c mRNA levels preceding 24-h oscillations of Ca V 1.2 protein levels in ventricle (with a 1.5 h phase shift) but not in atrial heart tissues. The periodicity of promoter activities and Ca V 1.2 proteins, which correlated with biphasic oscillations of L-type Ca 2+ current conductance, persisted in isolated ventricular cardiomyocytes from PCa-Luc mice over the course of the 24-h cycle, suggesting an endogenous cardiac circadian regulation. Comparison of 24-h temporal patterns of clock gene expressions in ventricles and atrial tissues of the same mice revealed conserved circadian oscillations of the core clock genes except for the retinoid-related orphan receptor α gene (RORα), which remained constant throughout the course of a day in atrial tissues. In vitro we found that RORα is recruited to two specific regions on the Cacna1c promoter and that incubation with specific RORα inhibitor disrupted 24-h oscillations of ventricular promoter activities and Ca V 1.2 protein levels. Similar results were observed for pore forming subunits of the K + transient outward currents, K V 4.2 and K V 4.3. Conclusions: These findings raise the possibility that the RORα-dependent rhythmic regulation of cardiac Ca V 1.2 and K V 4.2/4.3 throughout the daily cycle may play an important role in physiopathology of heart function.
RESUMEN
Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.
Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Ratones , Humanos , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cardiotoxicidad , Cardiomiopatía Dilatada/patología , Doxorrubicina/metabolismo , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , ApoptosisRESUMEN
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Asunto(s)
Hipertensión Pulmonar , Disfunción Ventricular Derecha , Masculino , Humanos , Ventrículos Cardíacos/patología , Remodelación Ventricular/fisiología , Miocitos Cardíacos/patologíaRESUMEN
Background Human cardiac biopsies are widely used in clinical and fundamental research to decipher molecular events that characterize cardiac physiological and pathophysiological states. One of the main approaches relies on the analysis of semiquantitative immunoblots that reveals alterations in protein expression levels occurring in diseased hearts. To maintain semiquantitative results, expression level of target proteins must be standardized. The expression of HKP (housekeeping proteins) is commonly used to this purpose. Methods and Results We evaluated the stability of HKP expression (actin, ß-tubulin, GAPDH, vinculin, and calsequestrin) and total protein staining within control (coefficient of variation) and comparatively with ischemic human heart biopsies (P value). All HKP exhibited a high level of intragroup (ie, actin, ß-tubulin, and GAPDH) and/or intergroup variability (ie, GAPDH, vinculin, and calsequestrin). Among all, we found total protein staining to exhibit the highest degree of stability within and between groups, which makes this reference the best to study protein expression level in human biopsies from ischemic hearts and age-matched controls. In addition, we illustrated that using an inappropriate reference protein marker misleads interpretation on SERCA2 (sarco/endoplasmic reticulum Ca2+ ATPase) and cMyBPC (cardiac myosin binding protein-C) expression level after myocardial infarction. Conclusions These reemphasize the need to standardize the level of protein expression with total protein staining in comparative immunoblot studies on human samples from control and diseased hearts.
Asunto(s)
Actinas , Calsecuestrina , Miosinas Cardíacas , Isquemia , Actinas/metabolismo , Biopsia , Miosinas Cardíacas/metabolismo , Grupos Control , Humanos , Tubulina (Proteína)/metabolismo , Vinculina/metabolismoRESUMEN
BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.
Asunto(s)
Compuestos de Anilina , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Tiadiazoles , Animales , Humanos , Ratas , Compuestos de Anilina/uso terapéutico , Calcineurina/metabolismo , Calcio/metabolismo , Proliferación Celular/genética , Células Cultivadas , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Monocrotalina/toxicidad , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1 , Arteria Pulmonar/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Tiadiazoles/metabolismoRESUMEN
Dysfunction of the sinoatrial node (SAN), the natural heart pacemaker, is common in heart failure (HF) patients. SAN spontaneous activity relies on various ion currents in the plasma membrane (voltage clock), but intracellular Ca2+ ([Ca2+]i) release via ryanodine receptor 2 (RYR2; Ca2+ clock) plays an important synergetic role. Whereas remodeling of voltage-clock components has been revealed in HF, less is known about possible alterations to the Ca2+ clock. Here, we analyzed [Ca2+]i handling in SAN from a mouse HF model after transverse aortic constriction (TAC) and compared it with sham-operated animals. ECG data from awake animals showed slower heart rate in HF mice upon autonomic nervous system blockade, indicating intrinsic sinus node dysfunction. Confocal microscopy analyses of SAN cells within whole tissue showed slower and less frequent [Ca2+]i transients in HF. This correlated with fewer and smaller spontaneous Ca2+ sparks in HF SAN cells, which associated with lower RYR2 protein expression level and reduced phosphorylation at the CaMKII site. Moreover, PLB phosphorylation at the CaMKII site was also decreased in HF, which could lead to reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) function and lower sarcoplasmic reticulum Ca2+ content, further depressing the Ca2+ clock. The inhibition of CaMKII with KN93 slowed [Ca2+]i transient rate in both groups, but this effect was smaller in HF SAN, consistent with less CaMKII activation. In conclusion, our data uncover that the mechanism of intrinsic pacemaker dysfunction in HF involves reduced CaMKII activation.
Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Insuficiencia Cardíaca , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial/metabolismoRESUMEN
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
RESUMEN
The mosaic theory of hypertension was advocated by Irvine Page ~80 years ago and suggested that hypertension resulted from the close interactions of different causes. Increasing evidence indicates that hypertension and hypertensive end-organ damage are not only mediated by the proposed mechanisms that result in hemodynamic injury. Inflammation plays an important role in the pathophysiology and contributes to the deleterious consequences of arterial hypertension. Sodium intake is indispensable for normal body function but can be detrimental when it exceeds dietary requirements. Recent data show that sodium levels also modulate the function of monocytes/macrophages, dendritic cells, and different T-cell subsets. Some of these effects are mediated by changes in the microbiome and metabolome due to high-salt intake. The purpose of this review is to propose a revised and extended version of the mosaic theory by summarizing and integrating recent advances in salt, immunity, and hypertension research. Salt and inflammation are placed in the middle of the mosaic because both factors influence each of the remaining pieces.
Asunto(s)
Hipertensión , Cloruro de Sodio Dietético , Aldosterona , Humanos , Inflamación/complicaciones , Cloruro de Sodio Dietético/efectos adversosRESUMEN
Diabetes mellitus is a metabolic disorder with a chronic hyperglycaemic state. Cardiovascular diseases are the primary cause of mortality in patients with diabetes. Increasing evidence supports the existence of diabetic cardiomyopathy, a cardiac dysfunction with impaired cardiac contraction and relaxation, independent of coronary and/or valvular complications. Diabetic cardiomyopathy can lead to heart failure. Several preclinical and clinical studies have aimed to decipher the underlying mechanisms of diabetic cardiomyopathy. Among all the co-factors, hyperglycaemia seems to play an important role in this pathology. Hyperglycaemia has been shown to alter cardiac metabolism and function through several deleterious mechanisms, such as oxidative stress, inflammation, accumulation of advanced glycated end-products and upregulation of the hexosamine biosynthesis pathway. These mechanisms are responsible for the activation of hypertrophic pathways, epigenetic modifications, mitochondrial dysfunction, cell apoptosis, fibrosis and calcium mishandling, leading to cardiac stiffness, as well as contractile and relaxation dysfunction. This review aims to describe the hyperglycaemic-induced alterations that participate in diabetic cardiomyopathy, and their correlation with the severity of the disease and patient mortality, and to provide an overview of cardiac outcomes of glucose-lowering therapy.
Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hiperglucemia , Cardiomiopatías Diabéticas/etiología , Corazón , Humanos , Estrés OxidativoRESUMEN
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
RESUMEN
[Figure: see text].
Asunto(s)
Señalización del Calcio , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Potenciales de Acción , Animales , Sitios de Unión , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Unión Proteica , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologíaRESUMEN
The archetypal store-operated Ca2+ channels (SOCs), Orai1, which are stimulated by the endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor stromal interaction molecule 1 (STIM1) upon Ca2+ store depletion is traditionally viewed as instrumental for the function of non-excitable cells. In the recent years, expression and function of Orai1 have gained recognition in excitable cardiomyocytes, albeit controversial. Even if its cardiac physiological role in adult is still elusive and needs to be clarified, Orai1 contribution in cardiac diseases such as cardiac hypertrophy and heart failure (HF) is increasingly recognized. The present review surveys our current arising knowledge on the new role of Orai1 channels in the heart and debates on its participation to cardiac hypertrophy and HF.
RESUMEN
Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.