Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 391(2): 269-286, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512054

RESUMEN

The central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification. This pertains specifically to neuropeptide neurons, which typically are stereotypically generated in discrete subsets, allowing for unambiguous single-cell resolution in different genetic contexts. Here, we study the specification of the OrcoA-LA neurons, characterized by the expression of the neuropeptide Orcokinin A and located laterally in the A1-A5 abdominal segments of the VNC. We identified the progenitor neuroblast (NB; NB5-3) and the temporal window (castor/grainyhead) that generate the OrcoA-LA neurons. We also describe the role of the Ubx, abd-A, and Abd-B Hox genes in the segment-specific generation of these neurons. Additionally, our results indicate that the OrcoA-LA neurons are "Notch Off" cells, and neither programmed cell death nor the BMP pathway appears to be involved in their specification. Finally, we performed a targeted genetic screen of 485 genes known to be expressed in the CNS and identified nab, vg, and tsh as crucial determinists for OrcoA-LA neurons. This work provides a new neuropeptidergic model that will allow for addressing new questions related to neuronal specification mechanisms in the future.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras
2.
Dev Neurobiol ; 82(6): 495-504, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796156

RESUMEN

A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes. However, while segment-specific PCD is highly precise, Hox gene expression is evident in gradients, raising the issue of how the Hox gene function is precisely gated to trigger PCD in specific segments at the outer limits of Hox expression. The Drosophila Va neurons are initially generated in all nerve cord segments but removed by PCD in posterior segments. Va PCD is triggered by the posteriorly expressed Hox gene Abdominal-B (Abd-B). However, Va PCD is highly reproducible despite exceedingly weak Abd-B expression in the anterior frontiers of its expression. Here, we found that the transcriptional cofactor Dachshund supports Abd-B-mediated PCD in its anterior domain. In vivo bimolecular fluorescence complementation analysis lends support to the idea that the Dachshund/Abd-B interplay may involve physical interactions. These findings provide an example of how combinatorial codes of transcription factors ensure precision in Hox-mediated PCD in specific segments at the outer limits of Hox expression.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Apoptosis , Sistema Nervioso Central/metabolismo , Perros , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
PLoS Genet ; 18(6): e1010255, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737938

RESUMEN

The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.


Asunto(s)
Proteínas Morfogenéticas Óseas , Proteínas de Ciclo Celular , Proteínas de Drosophila , Neuronas , Proteínas Serina-Treonina Quinasas , Receptores de Superficie Celular , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ratones , Proteínas de Mantenimiento de Minicromosoma/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
4.
PLoS Genet ; 14(8): e1007496, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30133436

RESUMEN

During embryonic development, a number of genetic cues act to generate neuronal diversity. While intrinsic transcriptional cascades are well-known to control neuronal sub-type cell fate, the target cells can also provide critical input to specific neuronal cell fates. Such signals, denoted retrograde signals, are known to provide critical survival cues for neurons, but have also been found to trigger terminal differentiation of neurons. One salient example of such target-derived instructive signals pertains to the specification of the Drosophila FMRFamide neuropeptide neurons, the Tv4 neurons of the ventral nerve cord. Tv4 neurons receive a BMP signal from their target cells, which acts as the final trigger to activate the FMRFa gene. A recent FMRFa-eGFP genetic screen identified several genes involved in Tv4 specification, two of which encode components of the U5 subunit of the spliceosome: brr2 (l(3)72Ab) and Prp8. In this study, we focus on the role of RNA processing during target-derived signaling. We found that brr2 and Prp8 play crucial roles in controlling the expression of the FMRFa neuropeptide specifically in six neurons of the VNC (Tv4 neurons). Detailed analysis of brr2 revealed that this control is executed by two independent mechanisms, both of which are required for the activation of the BMP retrograde signaling pathway in Tv4 neurons: (1) Proper axonal pathfinding to the target tissue in order to receive the BMP ligand. (2) Proper RNA splicing of two genes in the BMP pathway: the thickveins (tkv) gene, encoding a BMP receptor subunit, and the Medea gene, encoding a co-Smad. These results reveal involvement of specific RNA processing in diversifying neuronal identity within the central nervous system.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/fisiología , Drosophila/genética , FMRFamida/fisiología , Neuronas/fisiología , ARN Helicasas/fisiología , Factores de Empalme de ARN/fisiología , Animales , Diferenciación Celular , Sistema Nervioso Central/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , FMRFamida/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Helicasas/genética , Factores de Empalme de ARN/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Análisis de Secuencia de ARN , Transducción de Señal , Empalmosomas , Factores de Transcripción/genética , Factores de Transcripción/fisiología
5.
PLoS One ; 13(4): e0194281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29634720

RESUMEN

In this study, we identify the means by which segmentally homologous neurons acquire different neuropeptide fates in Drosophila. Ventral abdominal (Va)-neurons in the A1 segment of the ventral nerve cord express DH31 and AstA neuropeptides (neuropeptidergic fate I) by virtue of Ubx activity, whereas the A2-A4 Va-neurons express the Capa neuropeptide (neuropeptidergic fate II) under the influence of abdA. These different fates are attained through segment-specific programs of neural subtype specification undergone by segmentally homologous neurons. This is an attractive alternative by which Hox genes can shape Drosophila segmental neural architecture (more sophisticated than the previously identified binary "to live" or "not to live" mechanism). These data refine our knowledge of the mechanisms involved in diversifying neuronal identity within the central nervous system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Hormonas de Insectos/metabolismo , Sistema Nervioso/embriología , Neuropéptidos/metabolismo , Oligopéptidos/metabolismo , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula , Sistema Nervioso Central/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Proteínas de Homeodominio/genética , Masculino , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Temperatura , Factores de Transcripción/metabolismo
6.
Elife ; 52016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27740908

RESUMEN

During Drosophila embryonic nervous system development, neuroblasts express a programmed cascade of five temporal transcription factors that govern the identity of cells generated at different time-points. However, these five temporal genes fall short of accounting for the many distinct cell types generated in large lineages. Here, we find that the late temporal gene castor sub-divides its large window in neuroblast 5-6 by simultaneously activating two cell fate determination cascades and a sub-temporal regulatory program. The sub-temporal program acts both upon itself and upon the determination cascades to diversify the castor window. Surprisingly, the early temporal gene Kruppel acts as one of the sub-temporal genes within the late castor window. Intriguingly, while the temporal gene castor activates the two determination cascades and the sub-temporal program, spatial cues controlling cell fate in the latter part of the 5-6 lineage exclusively act upon the determination cascades.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Sistema Nervioso/embriología , Animales , Proteínas de Unión al ADN/metabolismo
7.
PLoS Biol ; 14(5): e1002450, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27148744

RESUMEN

Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Tissue Res ; 358(2): 621-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25129108

RESUMEN

Studies in the Drosophila embryonic NB4-2 lineage have suggested that the transcription factor Klumpfuss (Klu) functions within embryonic neuroblast lineages to differentiate between the identities of two adjacent ganglion mother cells (GMCs). However, because of the limited lineage markers available, these observations have been made only for the NB4-2 lineage. Recent findings have placed this transcription factor in the vanguard of Drosophila neural stem cell biology by demonstrating that Klu is necessary for larval neuroblast growth and self-renewal. Here, we have studied the role of klu in an incipient model in order to address basic mechanisms of neural specification: the Va system. None of the previously reported roles of Klu satisfactorily explain our observations. Unexpectedly, in this lineage, klu is necessary for differentiating between the fates of the two neurons born from a unique GMC; klu mutants produce two B-type cells, rather than one B-type (Notch-OFF) and one A-type (Notch-ON) cell. Additionally, our results demonstrate that Klu operates in the GMC and/or in the newly born neuron, but not in the neuroblast. Unlike in larval neuroblasts in which Klu is an executor of Notch signaling, we have found that Klu does not lie downstream of the Notch pathway in this cell division context.


Asunto(s)
División Celular Asimétrica , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
9.
Development ; 140(10): 2181-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633512

RESUMEN

A number of transcription factors that are expressed within most, if not all, embryonic neuroblast (NB) lineages participate in neural subtype specification. Some have been extensively studied in several NB lineages (e.g. components of the temporal gene cascade) whereas others only within specific NB lineages. To what extent they function in other lineages remains unknown. Klumpfuss (Klu), the Drosophila ortholog of the mammalian Wilms tumor 1 (WT1) protein, is one such transcription factor. Studies in the NB4-2 lineage have suggested that Klu functions to ensure that the two ganglion mother cells (GMCs) in this embryonic NB lineage acquire different fates. Owing to limited lineage marker availability, these observations were made only for the NB4-2 lineage. Recent findings reveal that Klu is necessary for larval neuroblast growth and self-renewal. We have extended the study of Klu to the well-known embryonic NB5-6T lineage and describe a novel role for Klu in the Drosophila embryonic CNS. Our results demonstrate that Klu is expressed specifically in the postmitotic Ap4/FMRFa neuron, promoting its differentiation through the initiation of BMP signaling. Our findings indicate a pleiotropic function of Klu in Ap cluster specification in general and particularly in Ap4 neuron differentiation, indicating that Klu is a multitasking transcription factor. Finally, our studies indicate that a transitory downregulation of klu is crucial for the specification of the Ap4/FMRFa neuron. Similar to WT1, klu seems to have either self-renewal or differentiation-promoting functions, depending on the developmental context.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , FMRFamida/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Análisis por Conglomerados , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Microscopía Confocal , Neuronas/metabolismo , Transducción de Señal
10.
Development ; 138(24): 5311-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22071101

RESUMEN

Drosophila embryonic neuroblasts generate different cell types at different time points. This is controlled by a temporal cascade of Hb→Kr→Pdm→Cas→Grh, which acts to dictate distinct competence windows sequentially. In addition, Seven up (Svp), a member of the nuclear hormone receptor family, acts early in the temporal cascade, to ensure the transition from Hb to Kr, and has been referred to as a 'switching factor'. However, Svp is also expressed in a second wave within the developing CNS, but here, the possible role of Svp has not been previously addressed. In a genetic screen for mutants affecting the last-born cell in the embryonic NB5-6T lineage, the Ap4/FMRFamide neuron, we have isolated a novel allele of svp. Expression analysis shows that Svp is expressed in two distinct pulses in NB5-6T, and mutant analysis reveals that svp plays two distinct roles. In the first pulse, svp acts to ensure proper downregulation of Hb. In the second pulse, which occurs in a Cas/Grh double-positive window, svp acts to ensure proper sub-division of this window. These studies show that a temporal factor may play dual roles, acting at two different stages during the development of one neural lineage.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Receptores de Esteroides/metabolismo , Animales , Proteínas de Unión al ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , FMRFamida/metabolismo , Pruebas Genéticas , Mutación , Receptores de Esteroides/genética
11.
Mech Dev ; 128(3-4): 208-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21236339

RESUMEN

The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier regulatory events influence post-mitotic cell fate decisions is beginning to be understood in the Drosophila NB 5-6 lineage. However, it remains unknown to what extent these events operate in other lineages. To better understand this issue, we have used a very highly specific marker that identifies a small subset of abdominal cells expressing the Drosophila neuropeptide Capa: the ABCA neurons. Our data support the birth of the ABCA neurons from NB 5-3 in a cas temporal window in the abdominal segments A2-A4. Moreover, we show that the ABCA neuron has an ABCA-sibling cell which dies by apoptosis. Surprisingly, both cells are also generated in the abdominal segments A5-A7, although they undergo apoptosis before expressing Capa. In addition, we have performed a targeted genetic screen to identify players involved in ABCA specification. We have found that the ABCA fate requires zfh2, grain, Grunge and hedgehog genes. Finally, we show that the NB 5-3 generates other subtype of Capa-expressing cells (SECAs) in the third suboesophageal segment, which are born during a pdm/cas temporal window, and have different genetic requirements for their specification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Neuronas/metabolismo , Neuropéptidos/metabolismo , Abdomen/inervación , Animales , Antígenos de Diferenciación/metabolismo , Tipificación del Cuerpo/genética , Muerte Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Hedgehog/metabolismo , Tejido Nervioso/citología , Tejido Nervioso/embriología , Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuropéptidos/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
12.
Development ; 137(19): 3327-36, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823069

RESUMEN

Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Neuropéptidos/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/genética
13.
Mech Dev ; 127(9-12): 458-71, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20732418

RESUMEN

It is becoming increasingly clear that the activation of specific terminal differentiation genes during neural development is critically dependent upon the establishment of unique combinatorial transcription factor codes within distinct neural cell subtypes. However, it is still unclear to which extent these codes are shared by lineage-unrelated neurons expressing the same terminal differentiation genes. Additionally, it is not known if the activation of a specific terminal differentiation gene is restricted to cells born at a particular developmental time point. Here, we utilize the terminal differentiation gene FMRFa which is expressed by the Ap4 and SE2 neurons in the Drosophila ventral nerve cord, to explore these issues in depth. We find that the Ap4 and SE2 neurons are generated by different neural progenitors and use different combinatorial codes to activate FMRFa expression. Additionally, we find that the Ap4 and SE2 neurons are generated in different temporal gene expression windows. Extending the investigation to include a second Drosophila terminal differentiation gene, Leucokinin, we find similar results, suggesting that neurons generated by different progenitors might commonly use different transcription factor codes to activate the same terminal differentiation gene. Furthermore, these results imply that the activation of a particular terminal differentiation gene in temporally unrestricted.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , FMRFamida/genética , FMRFamida/metabolismo , Genes de Insecto/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fenotipo , Factores de Tiempo
14.
Cell Tissue Res ; 339(2): 321-36, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19941006

RESUMEN

The distribution of leucokinin (LK) neurons in the central nervous system (CNS) of Drosophila melanogaster was described by immunolabelling many years ago. However, no detailed underlying information of the input or output connections of their neurites was then available. Here, we provide a more accurate morphological description by employing a novel LK-specific GAL4 line that recapitulates LK expression. In order to analyse the possible afferent and efferent neural candidates of LK neurons, we used this lk-GAL4 line together with other CNS-Gal4 lines, combined with antisera against various neuropeptides or neurotransmitters. We found four kinds of LK neurons in the brain. (1) The lateral horn neurons connect the antennal glomerula to the mushroom bodies. (2) The suboesophageal neurons connect the gustatory receptors to the suboesophageal ganglia and ventral nerve cord. (3) The anterior neurons innervate the corpus cardiacum of the ring gland but LK expression is surprisingly not detectable from the third instar onwards in these neurons. (4) A set of abdominal ganglion neurons connect to the dorsal median tract in larvae and send their axons to a segmental muscle 8. Thus, the methods employed in our study can be used to identify individual neuropeptidergic neurons and thereby characterize functional cues or developmental transformations in their differentiation.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/anatomía & histología , Neuronas/metabolismo , Neuropéptidos/biosíntesis , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ganglios/metabolismo , Larva/anatomía & histología , Larva/genética , Larva/metabolismo , Músculos/metabolismo , Cuerpos Pedunculados/metabolismo , Vías Nerviosas , Neuritas/metabolismo , Neuropéptidos/genética , Sistemas Neurosecretores/metabolismo , Neurotransmisores/metabolismo
15.
Neuron Glia Biol ; 3(1): 75-88, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18634579

RESUMEN

Prospero is required in dividing longitudinal glia (LG) during axon guidance; initially to enable glial division in response to neuronal contact, and subsequently to maintain glial precursors in a quiescent state with mitotic potential. Only Prospero-positive LG respond to neuronal ablation by over-proliferating, mimicking a glial-repair response. Prospero is distributed unequally through the progeny cells of the longitudinal glioblast lineage. Just before axon contact the concentration of Prospero is higher in two of the four progeny cells, and after axon guidance Prospero is present only in six out of ten progeny LG. Here we ask how Prospero is distributed unequally in these two distinct phases. We show that before neuronal contact, longitudinal glioblasts undergo invaginating divisions, perpendicular to the ectodermal layer. Miranda is required to segregate Prospero asymmetrically up to the four glial-progeny stage. After neuronal contact, Prospero is present in only the LG that activate Notch signalling in response to Serrate provided by commissural axons, and Numb is restricted to the glia that do not contain Prospero. As a result of this dual regulation of Prospero deployment, glia are coupled to the formation and maintenance of axonal trajectories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...