RESUMEN
Glutamate decarboxylase 2 (GAD2) is the most important inhibitory neurotransmitter and plays a role in insulin-producing ß cells of pancreatic islets. The limitation of GAD2 expression to a few normal cell types makes GAD2 a potential immunohistochemical diagnostic marker. To evaluate the diagnostic utility of GAD2 immunohistochemistry, a tissue microarray containing 19,202 samples from 152 different tumor entities and 608 samples of 76 different normal tissue types was analyzed. In normal tissues, GAD2 staining was restricted to brain and pancreatic islet cells. GAD2 staining was seen in 20 (13.2%) of 152 tumor categories, including 5 (3.3%) tumor categories containing at least 1 strongly positive case. GAD2 immunostaining was most commonly seen in neuroendocrine carcinomas (58.3%) and neuroendocrine tumors (63.2%) of the pancreas, followed by granular cell tumors (37.0%) and neuroendocrine tumors of the lung (11.1%). GAD2 was only occasionally (<10% of cases) seen in 16 other tumor entities including paraganglioma, medullary thyroid carcinoma, and small cell neuroendocrine carcinoma of the urinary bladder. Data on GAD2 and progesterone receptor (PR) expression (from a previous study) were available for 95 pancreatic and 380 extrapancreatic neuroendocrine neoplasms. For determining a pancreatic origin of a neuroendocrine neoplasm, the sensitivity of GAD2 was 64.2% and specificity 96.3%, while the sensitivity of PR was 56.8% and specificity 92.6%. The combination of PR and GAD2 increased both sensitivity and specificity. GAD2 immunohistochemistry is a highly useful diagnostic tool for the identification of pancreatic origin in case of neuroendocrine neoplasms with unknown site of origin.