Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ISME J ; 15(4): 1136-1149, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33479491

RESUMEN

To thrive, vector-borne pathogens must survive in the vector's gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway's lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium's lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles' heel that is exploited by pathogens.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Biopelículas , Insectos Vectores , Yersinia pestis/genética
2.
Front Immunol ; 10: 1830, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428104

RESUMEN

Yersinioses caused by Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica are significant concerns in human and veterinary health. The link between virulence and the potent LcrV antigen has prompted the latter's selection as a major component of anti-Yersinia vaccines. Here, we report that (i) the group of Yersinia species encompassing Y. pestis and Y. pseudotuberculosis produces at least five different clades of LcrV and (ii) vaccination of mice with an LcrV-secreting Lactococcus lactis only protected against Yersinia strains producing the same LcrV clade as that of used for vaccination. By vaccinating with engineered LcrVs and challenging mice with strains producing either type of LcrV or a LcrV mutated for regions of interest, we highlight key polymorphic residues responsible for the absence of cross-protection. Our results show that an anti-LcrV-based vaccine should contain multiple LcrV clades if protection against the widest possible array of Yersinia strains is sought.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Lactococcus lactis/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Yersinia pestis/inmunología , Yersinia pseudotuberculosis/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Protección Cruzada/inmunología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunación/métodos , Virulencia/inmunología , Yersiniosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...