Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Am J Hum Genet ; 107(4): 670-682, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910913

RESUMEN

Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Factor Nuclear 1-alfa del Hepatocito/genética , Mutación Missense , Sistema de Registros , Aprendizaje Automático no Supervisado , Adolescente , Adulto , Alelos , Niño , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/patología , Femenino , Expresión Génica , Humanos , Masculino , Noruega/epidemiología , Fenotipo , Análisis de Componente Principal , Reino Unido/epidemiología , Secuenciación del Exoma , Adulto Joven
3.
Diabetes Care ; 43(4): 909-912, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32001615

RESUMEN

OBJECTIVE: Heterozygous loss-of-function mutations in HNF1A cause maturity-onset diabetes of the young (MODY). Affected individuals can be treated with low-dose sulfonylureas. Individuals with homozygous HNF1A mutations causing MODY have not been reported. RESEARCH DESIGN AND METHODS: We phenotyped a kindred with young-onset diabetes and performed molecular genetic testing, a mixed meal tolerance test, a sulfonylurea challenge, and in vitro assays to assess variant protein function. RESULTS: A homozygous HNF1A variant (p.A251T) was identified in three insulin-treated family members diagnosed with diabetes before 20 years of age. Those with the homozygous variant had low hs-CRP levels (0.2-0.8 mg/L), and those tested demonstrated sensitivity to sulfonylurea given at a low dose, completely transitioning off insulin. In silico modeling predicted a variant of unknown significance; however, in vitro studies supported a modest reduction in transactivation potential (79% of that for the wild type; P < 0.05) in the absence of endogenous HNF1A. CONCLUSIONS: Homozygous hypomorphic HNF1A variants are a cause of HNF1A-MODY. We thus expand the allelic spectrum of variants in dominant genes causing diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Compuestos de Sulfonilurea/uso terapéutico , Adulto , Edad de Inicio , Alelos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Diabetes Mellitus Tipo 2/epidemiología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Femenino , Homocigoto , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Mutación , Mutación Missense , Embarazo
4.
Diabetes Care ; 42(1): 17-26, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455330

RESUMEN

OBJECTIVE: Maturity-onset diabetes of the young (MODY) due to variants in HNF1A is the most common type of monogenic diabetes. Frequent misdiagnosis results in missed opportunity to use sulfonylureas as first-line treatment. A nongenetic biomarker could improve selection of subjects for genetic testing and increase diagnosis rates. We previously reported that plasma levels of antennary fucosylated N-glycans and high-sensitivity C-reactive protein (hs-CRP) are reduced in individuals with HNF1A-MODY. In this study, we examined the potential use of N-glycans and hs-CRP in discriminating individuals with damaging HNF1A alleles from those without HNF1A variants in an unselected population of young adults with nonautoimmune diabetes. RESEARCH DESIGN AND METHODS: We analyzed the plasma N-glycan profile, measured hs-CRP, and sequenced HNF1A in 989 individuals with diabetes diagnosed when younger than age 45, persistent endogenous insulin production, and absence of pancreatic autoimmunity. Systematic assessment of rare HNF1A variants was performed. RESULTS: We identified 29 individuals harboring 25 rare HNF1A alleles, of which 3 were novel, and 12 (in 16 probands) were considered pathogenic. Antennary fucosylated N-glycans and hs-CRP were able to differentiate subjects with damaging HNF1A alleles from those without rare HNF1A alleles. Glycan GP30 had a receiver operating characteristic curve area under the curve (AUC) of 0.90 (88% sensitivity, 80% specificity, cutoff 0.70%), whereas hs-CRP had an AUC of 0.83 (88% sensitivity, 69% specificity, cutoff 0.81 mg/L). CONCLUSIONS: Half of rare HNF1A sequence variants do not cause MODY. N-glycan profile and hs-CRP could both be used as tools, alone or as adjuncts to existing pathways, for identifying individuals at high risk of carrying a damaging HNF1A allele.


Asunto(s)
Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2/sangre , Factor Nuclear 1-alfa del Hepatocito/sangre , Polisacáridos/sangre , Adolescente , Adulto , Alelos , Biomarcadores/sangre , Colesterol/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Insulina/uso terapéutico , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Triglicéridos/sangre , Adulto Joven
5.
Nat Genet ; 50(11): 1505-1513, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30297969

RESUMEN

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).


Asunto(s)
Mapeo Cromosómico/métodos , Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Genoma Humano/genética , Islotes Pancreáticos/metabolismo , Polimorfismo de Nucleótido Simple , Índice de Masa Corporal , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/patología , Femenino , Frecuencia de los Genes , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Islotes Pancreáticos/patología , Desequilibrio de Ligamiento , Masculino , Metaanálisis como Asunto , Factores Sexuales , Población Blanca/genética
6.
Biochem Med (Zagreb) ; 28(2): 020703, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29666556

RESUMEN

INTRODUCTION: Maturity onset diabetes of the young due to HNF1A mutations (HNF1A-MODY) is the most frequent form of monogenic diabetes in adults. It is often misdiagnosed as type 1 or type 2 diabetes, but establishing genetic diagnosis is important, as treatment differs from the common types of diabetes. HNF1A-MODY has not been investigated in Croatia before due to limited access to genetic testing. In this study we aimed to describe the characteristics of young adults diagnosed with diabetes before the age of 45 years, who have rare HNF1A allele variants, and estimate the prevalence of HNF1A-MODY in Croatia. MATERIALS AND METHODS: We recruited 477 C-peptide positive and beta cell antibody negative subjects through the Croatian Diabetes Registry. HNF1A was sequenced for all participants and systematic assessment of the variants found was performed. The prevalence of HNF1A-MODY was calculated in the study group and results extrapolated to estimate the proportion of diabetic individuals with HNF1A-MODY in Croatia and the population prevalence. RESULTS: Our study identified 13 individuals harbouring rare HNF1A allelic variants. After systematic assessment, 8 were assigned a diagnosis of HNF1A-MODY. Two individuals were able to discontinue insulin treatment following the diagnosis. We estimated that HNF1A-MODY in Croatia has a prevalence of 66 (95% CI 61 - 72) cases per million. CONCLUSIONS: The estimated prevalence of HNF1A-MODY in Croatia is similar to that reported in other European countries. Finding cases lead to important treatment changes for patients. This strongly supports the introduction of diagnostic genetic testing for monogenic diabetes in Croatia.


Asunto(s)
Péptido C/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Factor Nuclear 1-alfa del Hepatocito/genética , Mutación , Sistema de Registros , Adolescente , Adulto , Anciano , Alelos , Autoanticuerpos/sangre , Biomarcadores/sangre , Croacia/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Femenino , Expresión Génica , Frecuencia de los Genes , Pruebas Genéticas , Factor Nuclear 1-alfa del Hepatocito/inmunología , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Prevalencia , Análisis de Secuencia de ADN
7.
Elife ; 72018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29412141

RESUMEN

Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Islotes Pancreáticos/fisiopatología , Cromatina/metabolismo , Metilación de ADN , Humanos , Población Blanca
8.
Stem Cell Reports ; 9(5): 1395-1405, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29107594

RESUMEN

Current in vitro islet differentiation protocols suffer from heterogeneity and low efficiency. Induced pluripotent stem cells (iPSCs) derived from pancreatic beta cells (BiPSCs) preferentially differentiate toward endocrine pancreas-like cells versus those from fibroblasts (FiPSCs). We interrogated genome-wide open chromatin in BiPSCs and FiPSCs via ATAC-seq and identified ∼8.3k significant, differential open chromatin sites (DOCS) between the two iPSC subtypes (false discovery rate [FDR] < 0.05). DOCS where chromatin was more accessible in BiPSCs (Bi-DOCS) were significantly enriched for known regulators of endodermal development, including bivalent and weak enhancers, and FOXA2 binding sites (FDR < 0.05). Bi-DOCS were associated with genes related to pancreas development and beta-cell function, including transcription factors mutated in monogenic diabetes (PDX1, NKX2-2, HNF1A; FDR < 0.05). Moreover, Bi-DOCS correlated with enhanced gene expression in BiPSC-derived definitive endoderm and pancreatic progenitor cells. Bi-DOCS therefore highlight genes and pathways governing islet-lineage commitment, which can be exploited for differentiation protocol optimization, diabetes disease modeling, and therapeutic purposes.


Asunto(s)
Reprogramación Celular , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/citología , Células Cultivadas , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares , Unión Proteica , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
9.
Nature ; 538(7624): 248-252, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27680694

RESUMEN

Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10-8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = -0.22, P = 5.5 × 10-13), T2D (Rg = -0.27, P = 1.1 × 10-6) and coronary artery disease (Rg = -0.30, P = 6.5 × 10-9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10-4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.


Asunto(s)
Envejecimiento/genética , Peso al Nacer/genética , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Feto/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Adulto , Antropometría , Presión Sanguínea/genética , Ensamble y Desensamble de Cromatina , Estudios de Cohortes , Conjuntos de Datos como Asunto , Femenino , Sitios Genéticos/genética , Variación Genética/genética , Impresión Genómica/genética , Genotipo , Glucosa/metabolismo , Glucógeno/biosíntesis , Humanos , Insulina/metabolismo , Masculino , Fenotipo , Transducción de Señal
10.
Nat Genet ; 48(9): 1055-1059, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27500523

RESUMEN

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10(-14)) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Transportador de Glucosa de Tipo 2/genética , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Glucemia/análisis , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/análisis , Humanos , Población Blanca
11.
PLoS Genet ; 11(12): e1005694, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26624892

RESUMEN

The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Insulina/genética , Factores de Transcripción/genética , Diabetes Mellitus Tipo 2/patología , Exones , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Sitios de Carácter Cuantitativo/genética , Transducción de Señal , Factores de Transcripción/biosíntesis
12.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132169

RESUMEN

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Asunto(s)
Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Índice Glucémico/genética , Obesidad/genética , Sitios de Carácter Cuantitativo/genética , Índice de Masa Corporal , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo , Quinasas del Centro Germinal , Glucosa-6-Fosfatasa/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética , Trombospondinas/genética
13.
PLoS One ; 9(6): e98608, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926958

RESUMEN

INTRODUCTION: Most studies seeking common variant associations with type 2 diabetes (T2D) have focused on individuals of European ancestry. These discoveries need to be evaluated in other major ancestral groups, to understand ethnic differences in predisposition, and establish whether these contribute to variation in T2D prevalence and presentation. This study aims to establish whether common variants conferring T2D-risk in Europeans contribute to T2D-susceptibility in the South Asian population of Sri Lanka. METHODOLOGY: Lead single nucleotide polymorphism (SNPs) at 37 T2D-risk loci attaining genome-wide significance in Europeans were genotyped in 878 T2D cases and 1523 normoglycaemic controls from Sri Lanka. Association testing was performed by logistic regression adjusting for age and sex and by the Cochran-Mantel-Haenszel test after stratifying according to self-identified ethnolinguistic subgroup. A weighted genetic risk score was generated to examine the combined effect of these SNPs on T2D-risk in the Sri Lankan population. RESULTS: Of the 36 SNPs passing quality control, sixteen showed nominal (p<0.05) association in Sri Lankan samples, fifteen of those directionally-consistent with the original signal. Overall, these association findings were robust to analyses that accounted for membership of ethnolinguistic subgroups. Overall, the odds ratios for 31 of the 36 SNPs were directionally-consistent with those observed in Europeans (p = 3.2×10(-6)). Allelic odds ratios and risk allele frequencies in Sri Lankan subjects were not systematically different to those reported in Europeans. Genetic risk score and risk of T2D were strongly related in Sri Lankans (per allele OR 1.10 [95%CI 1.08-1.13], p = 1.2×10(-17)). CONCLUSION: Our data indicate that most T2D-risk variants identified in Europeans have similar effects in South Asians from Sri Lanka, and that systematic difference in common variant associations are unlikely to explain inter-ethnic differences in prevalence or presentation of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Población Blanca/etnología , Asia Sudoriental/etnología , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Modelos Logísticos , Sri Lanka/etnología , Población Blanca/genética
14.
PLoS One ; 8(4): e59859, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23573215

RESUMEN

Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Microbiología del Suelo , Agricultura/métodos , Biodiversidad , Brassica rapa/microbiología , Productos Agrícolas/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética , Tipificación Molecular , Técnicas de Tipificación Micológica , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Rizosfera , Semillas/microbiología , Análisis de Secuencia de ADN
15.
Diabetes ; 62(4): 1329-37, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23274891

RESUMEN

A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥ 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Polisacáridos/sangre , Adolescente , Adulto , Biomarcadores , Femenino , Regulación de la Expresión Génica/fisiología , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Polimorfismo de Nucleótido Simple , Polisacáridos/metabolismo , Reproducibilidad de los Resultados , Adulto Joven
16.
Nat Genet ; 45(1): 76-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23202124

RESUMEN

Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.


Asunto(s)
Peso al Nacer/genética , Estatura/genética , Desarrollo Fetal/genética , Ligamiento Genético , Sitios de Carácter Cuantitativo , Adulto , Presión Sanguínea/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple
17.
Biol Rev Camb Philos Soc ; 87(1): 52-71, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21631700

RESUMEN

There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Biocombustibles , Ecosistema , Abastecimiento de Alimentos , Factores de Tiempo
18.
Diabetes ; 60(9): 2407-16, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21810599

RESUMEN

OBJECTIVE: Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for ß-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS: We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS: We observed a significant association of total zinc intake with lower fasting glucose levels (ß-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (ß-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS: Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.


Asunto(s)
Glucemia/genética , Proteínas de Transporte de Catión/metabolismo , Zinc/administración & dosificación , Zinc/metabolismo , Glucemia/metabolismo , Proteínas de Transporte de Catión/genética , Estudios de Cohortes , Humanos , Polimorfismo de Nucleótido Simple , Transportador 8 de Zinc
19.
PLoS Genet ; 7(2): e1001307, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21379325

RESUMEN

An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10(-20)) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10(-23)). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (-0.40% (95% CI: -0.74, -0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (-4.72% (-5.81, -3.63), p = 10(-17)), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.


Asunto(s)
Índice de Masa Corporal , Estudios de Asociación Genética , Sitios Genéticos/genética , Variación Genética , Crecimiento y Desarrollo/genética , Proteínas/genética , Adiposidad/genética , Adolescente , Alelos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Estatura/genética , Peso Corporal/genética , Niño , Preescolar , Estudios Transversales , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Metaanálisis como Asunto , Polimorfismo de Nucleótido Simple/genética
20.
Nat Genet ; 43(2): 117-20, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21186350

RESUMEN

Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 × 10(-9), odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Metformina/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Relación Dosis-Respuesta a Droga , Estudio de Asociación del Genoma Completo , Humanos , Hipoglucemiantes/farmacología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas Quinasas/metabolismo , Ratas , Escocia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...