Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2573, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519487

RESUMEN

In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.

2.
Adv Mater ; 35(15): e2211155, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36688433

RESUMEN

Optomechanical reliability has emerged as an important criterion for evaluating the performance and commercialization potential of perovskite solar cells (PSCs) due to the mechanical-property mismatch of metal halide perovskites with other device layer. In this work, grain-boundary grooves, a rarely discussed film microstructural characteristic, are found to impart significant effects on the optomechanical reliability of perovskite-substrate heterointerfaces and thus PSC performance. By pre-burying iso-butylammonium chloride additive in the electron-transport layer (ETL), GB grooves (GBGs) are flattened and an optomechanically reliable perovskite heterointerface that resists photothermal fatigue is created. The improved mechanical integrity of the ETL-perovskite heterointerfaces also benefits the charge transport and chemical stability by facilitating carrier injection and reducing moisture or solvent trapping, respectively. Accordingly, high-performance PSCs which exhibit efficiency retentions of 94.8% under 440 h damp heat test (85% RH and 85 °C), and 93.0% under 2000 h continuous light soaking are achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...