Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(9): 1788-1799, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39048791

RESUMEN

Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.


Asunto(s)
Genoma de Planta , Telómero , Telómero/genética , Genómica/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Plantas/genética , Cromosomas de las Plantas/genética , Haplotipos , Productos Agrícolas/genética , Fitomejoramiento/métodos
2.
Microbiol Spectr ; 12(6): e0361723, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38624222

RESUMEN

We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.


Asunto(s)
Clima Desértico , Microbiota , Prosopis , Rizosfera , Nódulos de las Raíces de las Plantas , Microbiología del Suelo , Nódulos de las Raíces de las Plantas/microbiología , Prosopis/microbiología , Prosopis/crecimiento & desarrollo , Raíces de Plantas/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Simbiosis , Árboles/microbiología , Fijación del Nitrógeno , Filogenia
3.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491323

RESUMEN

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Asunto(s)
Poaceae , Tetraploidía , Poaceae/genética , Poliploidía , Genómica , Transcriptoma/genética , Genoma de Planta/genética , Evolución Molecular
4.
Microbiol Res ; 281: 127630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295681

RESUMEN

Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.


Asunto(s)
Hypocreales , Deficiencias de Hierro , Sorghum , Trichoderma , Simbiosis , Raíces de Plantas/microbiología , Compuestos Férricos/metabolismo , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Suelo , Trichoderma/metabolismo
6.
J Adv Res ; 42: 315-329, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513421

RESUMEN

INTRODUCTION: Legume crops are an important source of protein and oil for human health and in fixing atmospheric N2 for soil enrichment. With an objective to accelerate much-needed genetic analyses and breeding applications, draft genome assemblies were generated in several legume crops; many of them are not high quality because they are mainly based on short reads. However, the superior quality of genome assembly is crucial for a detailed understanding of genomic architecture, genome evolution, and crop improvement. OBJECTIVES: Present study was undertaken with an objective of developing improved chromosome-length genome assemblies in six different legumes followed by their systematic investigation to unravel different aspects of genome organization and legume evolution. METHODS: We employed in situ Hi-C data to improve the existing draft genomes and performed different evolutionary and comparative analyses using improved genome assemblies. RESULTS: We have developed chromosome-length genome assemblies in chickpea, pigeonpea, soybean, subterranean clover, and two wild progenitor species of cultivated groundnut (A. duranensis and A. ipaensis). A comprehensive comparative analysis of these genome assemblies offered improved insights into various evolutionary events that shaped the present-day legume species. We highlighted the expansion of gene families contributing to unique traits such as nodulation in legumes, gravitropism in groundnut, and oil biosynthesis in oilseed legume crops such as groundnut and soybean. As examples, we have demonstrated the utility of improved genome assemblies for enhancing the resolution of "QTL-hotspot" identification for drought tolerance in chickpea and marker-trait associations for agronomic traits in pigeonpea through genome-wide association study. Genomic resources developed in this study are publicly available through an online repository, 'Legumepedia'. CONCLUSION: This study reports chromosome-length genome assemblies of six legume species and demonstrates the utility of these assemblies in crop improvement. The genomic resources developed here will have significant role in accelerating genetic improvement applications of legume crops.


Asunto(s)
Cicer , Fabaceae , Humanos , Fabaceae/genética , Mapeo Cromosómico , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Cicer/genética , Productos Agrícolas/genética , Glycine max/genética , Cromosomas
7.
BMC Genomics ; 23(1): 688, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199042

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional regulators involved in the control of a range of processes, including symbiotic interactions in plants. MiRNA involvement in arbuscular mycorrhizae (AM) symbiosis has been mainly studied in model species, and our study is the first to analyze global miRNA expression in the roots of AM colonized switchgrass (Panicum virgatum), an emerging biofuel feedstock. AM symbiosis helps plants gain mineral nutrition from the soil and may enhance switchgrass biomass production on marginal lands. Our goals were to identify miRNAs and their corresponding target genes that are controlling AM symbiosis in switchgrass. RESULTS: Through genome-wide analysis of next-generation miRNA sequencing reads generated from switchgrass roots, we identified 122 mature miRNAs, including 28 novel miRNAs. By comparing miRNA expression profiles of AM-inoculated and control switchgrass roots, we identified 15 AM-responsive miRNAs across lowland accession "Alamo", upland accession "Dacotah", and two upland/lowland F1 hybrids. We used degradome sequencing to identify target genes of the AM-responsive miRNAs revealing targets of miRNAs residing on both K and N subgenomes. Notably, genes involved in copper ion binding were targeted by downregulated miRNAs, while upregulated miRNAs mainly targeted GRAS family transcription factors. CONCLUSION: Through miRNA analysis and degradome sequencing, we revealed that both upland and lowland switchgrass genotypes as well as upland-lowland hybrids respond to AM by altering miRNA expression. We demonstrated complex GRAS transcription factor regulation by the miR171 family, with some miR171 family members being AM responsive while others remained static. Copper miRNA downregulation was common amongst the genotypes tested and we identified superoxide dismutases and laccases as targets, suggesting that these Cu-miRNAs are likely involved in ROS detoxification and lignin deposition, respectively. Other prominent targets of the Cu miRNAs were blue copper proteins. Overall, the potential effect of AM colonization on lignin deposition pathways in this biofuel crop highlights the importance of considering AM and miRNA in future biofuel crop development strategies.


Asunto(s)
MicroARNs , Micorrizas , Panicum , Biocombustibles , Cobre , Lignina , MicroARNs/genética , MicroARNs/metabolismo , Micorrizas/metabolismo , Panicum/metabolismo , Especies Reactivas de Oxígeno , Suelo , Superóxidos , Factores de Transcripción
8.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955640

RESUMEN

The mimosoid legumes are a clade of ~40 genera in the Caesalpinioideae subfamily of the Fabaceae that grow in tropical and subtropical regions. Unlike the better studied Papilionoideae, there are few genomic resources within this legume group. The tree Prosopis cineraria is native to the Near East and Indian subcontinent, where it thrives in very hot desert environments. To develop a tool to better understand desert plant adaptation mechanisms, we sequenced the P. cineraria genome to near-chromosomal assembly, with a total sequence length of ~691 Mb. We predicted 77,579 gene models (76,554 CDS, 361 rRNAs and 664 tRNAs) from the assembled genome, among them 55,325 (~72%) protein-coding genes that were functionally annotated. This genome was found to consist of over 58% repeat sequences, primarily long terminal repeats (LTR-)-retrotransposons. We find an expansion of terpenoid metabolism genes in P. cineraria and its relative Prosopis alba, but not in other legumes. We also observed an amplification of NBS-LRR disease-resistance genes correlated with LTR-associated retrotransposition, and identified 410 retrogenes with an active burst of chimeric retrogene creation that approximately occurred at the same time of divergence of P. cineraria from a common lineage with P. alba~23 Mya. These retrogenes include many biotic defense responses and abiotic stress stimulus responses, as well as the early Nodulin 93 gene. Nodulin 93 gene amplification is consistent with an adaptive response of the species to the low nitrogen in arid desert soil. Consistent with these results, our differentially expressed genes show a tissue specific expression of isoprenoid pathways in shoots, but not in roots, as well as important genes involved in abiotic salt stress in both tissues. Overall, the genome sequence of P. cineraria enriches our understanding of the genomic mechanisms of its disease resistance and abiotic stress tolerance. Thus, it is a very important step in crop and legume improvement.


Asunto(s)
Fabaceae , Prosopis , Resistencia a la Enfermedad/genética , Fabaceae/genética , Genes de Plantas , Genoma de Planta , Prosopis/genética , Árboles/genética
9.
iScience ; 25(7): 104574, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789857

RESUMEN

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype-dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid-a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae.

10.
J Appl Microbiol ; 133(5): 2760-2778, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35665578

RESUMEN

AIMS: Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS: Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS: TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.


Asunto(s)
Glycine max , Deficiencias de Hierro , Glycine max/metabolismo , Malatos/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Glutatión Reductasa/metabolismo , Raíces de Plantas/metabolismo , Superóxidos/metabolismo , Citrato (si)-Sintasa/metabolismo , Malato Sintasa/metabolismo , Clorofila/metabolismo , Hierro/metabolismo , Glutatión/metabolismo , Fenoles/metabolismo , Suelo , Citratos , Metionina/metabolismo , ARN Mensajero/metabolismo
11.
Front Plant Sci ; 12: 725728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567039

RESUMEN

The bamboos (Bambusoideae, Poaceae) comprise a major grass lineage with a complex evolutionary history involving ancient hybridization and allopolyploidy. About 1700 described species are classified into three tribes, Olyreae (herbaceous bamboos), Bambuseae (tropical woody bamboos), and Arundinarieae (temperate woody bamboos). Nuclear analyses strongly support monophyly of the woody tribes, whereas plastome analyses strongly support paraphyly, with Bambuseae sister to Olyreae. Our objectives were to clarify the origin(s) of the woody bamboo tribes and resolve the nuclear vs. plastid conflict using genomic tools. For the first time, plastid and nuclear genomic information from the same bamboo species were combined in a single study. We sampled 51 species of bamboos representing the three tribes, estimated their genome sizes and generated low-depth sample sequence data, from which plastomes were assembled and nuclear repeats were analyzed. The distribution of repeat families was found to agree with nuclear gene phylogenies, but also provides novel insights into nuclear evolutionary history. We infer two early, independent hybridization events, one between an Olyreae ancestor and a woody ancestor giving rise to the two Bambuseae lineages, and another between two woody ancestors giving rise to the Arundinarieae. Retention of the Olyreae plastome associated with differential dominance of nuclear genomes and subsequent diploidization in some lineages explains the paraphyly observed in plastome phylogenetic estimations. We confirm ancient hybridization and allopolyploidy in the origins of the extant woody bamboo lineages and propose biased fractionation and diploidization as important factors in their evolution.

12.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34515796

RESUMEN

Aegilops tauschii is the donor of the D subgenome of hexaploid wheat and an important genetic resource. The reference-quality genome sequence Aet v4.0 for Ae. tauschii acc. AL8/78 was therefore an important milestone for wheat biology and breeding. Further advances in sequencing acc. AL8/78 and release of the Aet v5.0 sequence assembly are reported here. Two new optical maps were constructed and used in the revision of pseudomolecules. Gaps were closed with Pacific Biosciences long-read contigs, decreasing the gap number by 38,899. Transposable elements and protein-coding genes were reannotated. The number of annotated high-confidence genes was reduced from 39,635 in Aet v4.0 to 32,885 in Aet v5.0. A total of 2245 biologically important genes, including those affecting plant phenology, grain quality, and tolerance of abiotic stresses in wheat, was manually annotated and disease-resistance genes were annotated by a dedicated pipeline. Disease-resistance genes encoding nucleotide-binding site domains, receptor-like protein kinases, and receptor-like proteins were preferentially located in distal chromosome regions, whereas those encoding transmembrane coiled-coil proteins were dispersed more evenly along the chromosomes. Discovery, annotation, and expression analyses of microRNA (miRNA) precursors, mature miRNAs, and phasiRNAs are reported, including miRNA target genes. Other small RNAs, such as hc-siRNAs and tRFs, were characterized. These advances enhance the utility of the Ae. tauschii genome sequence for wheat genetics, biotechnology, and breeding.


Asunto(s)
Aegilops , Genoma de Planta , Fitomejoramiento , Poaceae/genética , Triticum/genética
13.
J Agric Food Chem ; 69(25): 7115-7126, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34152762

RESUMEN

Microbiomes can greatly affect the quality of fermented food and beverages, including tea. In this study, microbial populations were characterized during black and green tea manufacturing, revealing that tea processing steps can drive both the bacterial and fungal community structure. Tea leaves were found to mostly harbor Proteobacteria, Bacteriodetes, Firmicutes, and Actinobacteria among bacteria and Ascomycetes among fungi. During processing, tea microbial populations changed especially between sterilized and unsterilized samples. The surface sterilization of fresh leaves before processing can remove many microbes, especially the bacteria of the genera Sphingomonas and Methylobacteria, indicating that these are mostly phylloplane microbes on tea leaves. The surface sterilization removed most fungi, except the Debaryomyces. We also observed a fluctuation in the content of several tea quality-related metabolites during processing. Caffeine and theanine were found in the same quantities in green tea with or without leaf surface sterilization. However, the sterilization process dramatically decreased the content of total catechins and theanine in black tea, indicating that microbes on the surface of tea leaf may be involved in maintaining the formation of these important metabolites during black tea processing.


Asunto(s)
Camellia sinensis , Catequina , Microbiota , Catequina/análisis , Hojas de la Planta/química ,
14.
Mol Biol Evol ; 38(9): 3664-3675, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33964159

RESUMEN

Limited genome resources are a bottleneck in the study of horizontal transfer (HT) of DNA in plants. To solve this issue, we tested the usefulness of low-depth sequencing data generated from 19 previously uncharacterized panicoid grasses for HT investigation. We initially searched for horizontally transferred LTR-retrotransposons by comparing the 19 sample sequences to 115 angiosperm genome sequences. Frequent HTs of LTR-retrotransposons were identified solely between panicoids and rice (Oryza sativa). We consequently focused on additional Oryza species and conducted a nontargeted investigation of HT involving the panicoid genus Echinochloa, which showed the most HTs in the first set of analyses. The comparison of nine Echinochloa samples and ten Oryza species identified recurrent HTs of diverse transposable element (TE) types at different points in Oryza history, but no confirmed cases of HT for sequences other than TEs. One case of HT was observed from one Echinochloa species into one Oryza species with overlapping geographic distributions. Variation among species and data sets highlights difficulties in identifying all HT, but our investigations showed that sample sequence analyses can reveal the importance of HT for the diversification of the TE repertoire of plants.


Asunto(s)
Elementos Transponibles de ADN , Oryza , Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Oryza/genética , Poaceae/genética , Análisis de Secuencia
15.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33712819

RESUMEN

Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.


Asunto(s)
Sorghum , Mapeo Cromosómico , Grano Comestible/genética , Perfilación de la Expresión Génica , Fenotipo , Sitios de Carácter Cuantitativo , Sorghum/genética
16.
Gigascience ; 10(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33710327

RESUMEN

BACKGROUND: Digitaria exilis, white fonio, is a minor but vital crop of West Africa that is valued for its resilience in hot, dry, and low-fertility environments and for the exceptional quality of its grain for human nutrition. Its success is hindered, however, by a low degree of plant breeding and improvement. FINDINGS: We sequenced the fonio genome with long-read SMRT-cell technology, yielding a ∼761 Mb assembly in 3,329 contigs (N50, 1.73 Mb; L50, 126). The assembly approaches a high level of completion, with a BUSCO score of >99%. The fonio genome was found to be a tetraploid, with most of the genome retained as homoeologous duplications that differ overall by ∼4.3%, neglecting indels. The 2 genomes within fonio were found to have begun their independent divergence ∼3.1 million years ago. The repeat content (>49%) is fairly standard for a grass genome of this size, but the ratio of Gypsy to Copia long terminal repeat retrotransposons (∼6.7) was found to be exceptionally high. Several genes related to future improvement of the crop were identified including shattering, plant height, and grain size. Analysis of fonio population genetics, primarily in Mali, indicated that the crop has extensive genetic diversity that is largely partitioned across a north-south gradient coinciding with the Sahel and Sudan grassland domains. CONCLUSIONS: We provide a high-quality assembly, annotation, and diversity analysis for a vital African crop. The availability of this information should empower future research into further domestication and improvement of fonio.


Asunto(s)
Digitaria , Fitomejoramiento , Digitaria/genética , Variación Genética , Genoma de Planta , Humanos , Preparaciones de Plantas
17.
Curr Opin Plant Biol ; 56: 190-196, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32005553

RESUMEN

Here we propose a 5G breeding approach for bringing much-needed disruptive changes to crop improvement. These 5Gs are Genome assembly, Germplasm characterization, Gene function identification, Genomic breeding (GB), and Gene editing (GE). In our view, it is important to have genome assemblies available for each crop and a deep collection of germplasm characterized at sequencing and agronomic levels for identification of marker-trait associations and superior haplotypes. Systems biology and sequencing-based mapping approaches can be used to identify genes involved in pathways leading to the expression of a trait, thereby providing diagnostic markers for target traits. These genes, markers, haplotypes, and genome-wide sequencing data may be utilized in GB and GE methodologies in combination with a rapid cycle breeding strategy.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico , Genoma de Planta/genética , Genómica , Fitomejoramiento
18.
Nat Commun ; 11(1): 884, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060277

RESUMEN

Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution.


Asunto(s)
Eragrostis/genética , Evolución Molecular , Genoma de Planta , África , Eragrostis/clasificación , Filogenia , Tetraploidía
19.
New Phytol ; 226(4): 1104-1116, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32061142

RESUMEN

Plant tannins, including condensed tannins (CTs) and hydrolyzable tannins (HTs), are widely distributed in the plant kingdom. To date, tannase (TA) - is a type of tannin acyl-hydrolase hydrolyzing HTs, CT monomer gallates and depsides - has been reported in microbes only. Whether plants express TA remains unknown. Herein, we report plant TA genes. A native Camellia sinensis TA (CsTA) is identified from leaves. Six TAs are cloned from tea, strawberry (Fragaria × ananassa, Fa) and four other crops. Biochemical analysis shows that the native CsTA and six recombinant TAs hydrolyze tannin compounds, depsides and phenolic glycosides. Transcriptional and metabolic analyses reveal that the expression of CsTA is oppositely associated with the accumulation of galloylated catechins. Moreover, the transient overexpression and RNA interference of FaTA are positively associated with the accumulation of ellagitannins in strawberry fruit. Phylogenetic analysis across different kingdoms shows that 29 plant TA homologs are clustered as a plant-specific TA clade in class I carboxylesterases. Further analysis across the angiosperms reveals that these TA genes are dispersed in tannin-rich plants, which share a single phylogenetic origin c. 120 million yr ago. Plant TA is discovered for the first time in the plant kingdom and is shown to be valuable to improve tannin compositions in plants.


Asunto(s)
Hidrolasas de Éster Carboxílico , Fragaria/enzimología , Taninos , Hidrolasas de Éster Carboxílico/genética , Productos Agrícolas/enzimología , Hidrólisis , Filogenia , Proteínas de Plantas
20.
Microbiol Resour Announc ; 9(3)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948957

RESUMEN

An unclassified Enterobacter strain was isolated from the pitcher fluids of a Sarracenia rosea pitcher plant growing at Splinter Hill Bog in Alabama. Its genome was sequenced using the Illumina platform. A genome assembly of 4,673,815 bp was obtained. In total, 4,646 protein-encoding sequences and 72 RNA genes are predicted from this assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...