Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 181, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353956

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease associated with its principal tick vector, Hyalomma spp. with increasing fatal incidence worldwide. Accordingly, CCHF is a World Health Organization-prioritized disease with the absence of effective preventive interventions and approved vaccines or effective treatments. This perspective raised from a multidisciplinary gap analysis considering a One Health approach beneficial for human and animal health and the environment exploring international collaborations, gaps and recommendations.

2.
Antiviral Res ; 225: 105844, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38428749

RESUMEN

The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Garrapatas , Animales , Humanos , Fiebre Hemorrágica de Crimea/epidemiología , Grecia , Brotes de Enfermedades
3.
NPJ Vaccines ; 8(1): 73, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210392

RESUMEN

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic disease in humans. There is a great need for effective vaccines and therapeutics against CCHFV for humans, as none are currently internationally approved. Recently, a monoclonal antibody against the GP38 glycoprotein protected mice against lethal CCHFV challenge. To show that GP38 is required and sufficient for protection against CCHFV, we used three inactivated rhabdoviral-based CCHFV-M vaccines, with or without GP38 in the presence or absence of the other CCHFV glycoproteins. All three vaccines elicited strong antibody responses against the respective CCHFV glycoproteins. However, only vaccines containing GP38 showed protection against CCHFV challenge in mice; vaccines without GP38 were not protective. The results of this study establish the need for GP38 in vaccines targeting CCHFV-M and demonstrate the efficacy of a CCHFV vaccine candidate based on an established vector platform.

4.
Ann N Y Acad Sci ; 1518(1): 209-225, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183296

RESUMEN

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.


Asunto(s)
COVID-19 , Ebolavirus , Humanos , Pandemias , COVID-19/epidemiología , Brotes de Enfermedades
5.
One Health ; 15: 100431, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277085

RESUMEN

Texas is a geographically large state with large human and livestock populations, many farms, a long coastal region, and extreme fluctuations in weather. During the last 15 years, the state of Texas has frequently suffered disasters or catastrophes causing extensive morbidity and economic loss. These disasters often have complicated consequences requiring multi-faceted responses. Recently, an interdisciplinary network of professionals from multiple academic institutions has emerged to collaborate in protecting Texas and the USA using a One Health approach. These experts are training the next generation of scientists in biopreparedness; increasing understanding of pathogens that cause repetitive harm; developing new therapeutics and vaccines against them; and developing novel surveillance approaches so that emerging pathogens will be detected early and thwarted before they can cause disastrous human and economic losses. These academic One Health partnerships strengthen our ability to protect human and animal health against future catastrophes that may impact the diverse ecoregions of Texas and the world.

6.
Antiviral Res ; 207: 105401, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049554

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a medically relevant tick-borne viral disease caused by the Bunyavirus, Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is endemic to Asia, the Middle East, South-eastern Europe, and Africa and is transmitted in enzootic cycles among ticks, mammals, and birds. Human infections are mostly subclinical or limited to mild febrile illness. Severe disease may develop, resulting in multi-organ failure, hemorrhagic manifestations, and case-fatality rates up to 30%. Despite the widespread distribution and life-threatening potential, no treatments have been approved for CCHF. Antiviral inhibitory peptides, which antagonize viral entry, are licensed for clinical use in certain viral infections and have been experimentally designed against human pathogenic bunyaviruses, with in vitro and in vivo efficacies. We designed inhibitory peptides against CCHFV with and without conjugation to various polyethylene glycol and sterol groups. These additions have been shown to enhance both cellular uptake and antiviral activity. Peptides were evaluated against pseudotyped and wild-type CCHFV via neutralization tests, Nairovirus fusion assays, and cytotoxicity profiling. Four peptides neutralized CCHFV with two of these peptides shown to inhibit viral fusion. This work represents the development of experimental countermeasures for CCHF, describes a nairovirus immunofluorescence fusion assay, and illustrates the utility of pseudotyped CCHFV for the screening of entry antagonists at low containment settings for CCHF.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Orthobunyavirus , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Hemorrágica de Crimea/epidemiología , Humanos , Mamíferos , Péptidos/farmacología , Péptidos/uso terapéutico , Polietilenglicoles/uso terapéutico , Esteroles/uso terapéutico
7.
J Gen Virol ; 103(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35412967

RESUMEN

Crimean-Congo haemorrhagic fever virus (CCHFV) is the medically most important member of the rapidly expanding bunyaviral family Nairoviridae. Traditionally, CCHFV isolates have been assigned to six distinct genotypes. Here, the International Committee on Taxonomy of Viruses (ICTV) Nairoviridae Study Group outlines the reasons for the recent decision to re-classify genogroup VI (aka Europe-2 or AP-92-like) as a distinct virus, Aigai virus (AIGV).


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Genotipo , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37206318

RESUMEN

Objective: There is no licensed vaccine available to prevent the severe tick-borne disease Crimean-Congo hemorrhagic fever (CCHF), caused by the CCHF virus (CCHFV). This study sought to show that a combination of computational methods and data from published literature can inform the design of a multi-epitope antigen for CCHFV that has the potential to be immunogenic. Methods: Cytotoxic and helper T-cell epitopes were evaluated on the CCHFV GPC using bioinformatic servers, and this data was combined with work from previous studies to identify potentially immunodominant regions of the GPC. Regions of the GPC were selected for generation of a model multi-epitope antigen in silico, and the percent residue identity and similarity of each region was compared across sequences representing the widespread geographical and ecological distribution of CCHFV. Results: Eleven multi-epitope regions were joined together with flexible linkers in silico to generate a model multi-epitope antigen, termed EPIC, which included 812 (75.7%) of all predicted epitopes. EPIC was predicted to be antigenic by two independent bioinformatic servers, suggesting that multi-epitope antigens should be explored further for CCHFV vaccine development. Conclusion: The results presented within this manuscript provide information for potential targets within the CCHFV GPC for guiding future vaccine development.

10.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34463877

RESUMEN

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos
11.
Acta Trop ; 218: 105892, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33753031

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease of human that caused by CCHF virus. To study the epidemiological distribution of CCHFV, 2183 tick samples were collected from sheep, goats, cattle and buffalo of different livestock farms of ten districts of Punjab province of Pakistan. Detection of CCHFV was done using enzyme link immunosorbent assay (ELISA) after proper identification of tick samples. The partial S-segment of CCHFV from ELISA positive tick samples was amplified by PCR and sequenced to determine the genotype of CCHFV. Out of2183 collected tick samples, 1913 ticks belonged to 5 species of genus Hyalomma as H. antolicum (48%), H. marginatum (30.2%), H. rufipes (10.82%), H. impressum (5.43%) and H. dromedarii (5.27%). While 270 ticks belonged to 3 species of genus Rhipicephalus as R. microplus (44.8%), R. sanguineus (32.22%) and R. turanicus (24.8%). The overall antigenic prevalence of CCHFV was found to be 12.13% in collected tick samples and 21 tick pools were sequenced for partial S-segment of CCHFV. All of the 21 tick pools were clustered in genotype IV (Asia-1). The highest prevalence of CCHFV was found in district Chakwal (24.13%) followed by Mianwali (23.68%), Rawalpindi (23.07%), Attock (20.0%), Rajanpur (10.52%) and Lahore (8.33%). In positive tick pools, the highest prevalence of CCHFV antigen was found in H. antolicum (39.6%) followed by H. marginatum (30.18%), H. rufipes (13.2%), H. impressum (3.77%), H. dromedarii (1.88%), R. microplus (5.66%) and R. sanguineus (5.66%). The current study confirms the presence of CCHFV in the ticks population of Punjab. The CCHF virus present in Punjab belongs to Asia-1 genotype. It is important to control the tick infestation of the animals present in these areas. So that the transmission cycle of CCHF can be inhibited.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Garrapatas/clasificación , Garrapatas/virología , Animales , Antígenos Virales/inmunología , Búfalos/parasitología , Bovinos/parasitología , Ensayo de Inmunoadsorción Enzimática , Granjas , Genotipo , Cabras/parasitología , Virus de la Fiebre Hemorrágica de Crimea-Congo/clasificación , Humanos , Ganado/parasitología , Pakistán/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa , Prevalencia , ARN Viral , Ovinos/parasitología , Infestaciones por Garrapatas/epidemiología
12.
mBio ; 11(5)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082259

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Lipopéptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Betacoronavirus/química , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Células HEK293 , Humanos , Lipopéptidos/química , Fusión de Membrana/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Dominios Proteicos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Células Vero
13.
PLoS Biol ; 18(9): e3000849, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898168

RESUMEN

Despite limited genomic diversity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA sequencing profiles of nasopharyngeal (NP) swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with up-regulation of antiviral factors such as OAS1-3 and IFIT1-3 and T helper type 1 (Th1) chemokines CXCL9/10/11, as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial (HAE) cultures replicated the in vivo antiviral host response 7 days post infection, with no induction of interferon-stimulated genes after 3 days. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2, increased as a function of viral load, while transcripts for B cell-specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of the Th1 chemokines CXCL9/10/11 and their cognate receptor CXCR3, as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B cell-specific and NK cell-specific transcripts and an increase in inhibitors of nuclear factor kappa-B (NF-κB) signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.


Asunto(s)
Antivirales/inmunología , Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad/genética , Cinética , Masculino , Persona de Mediana Edad , Nasofaringe/inmunología , Nasofaringe/virología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Proteínas Ribosómicas/genética , SARS-CoV-2 , Factores Sexuales , Transducción de Señal/genética , Carga Viral , Cicatrización de Heridas/genética , Adulto Joven
14.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888050

RESUMEN

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales/clasificación , Terminología como Asunto
15.
J Gen Virol ; 101(8): 798-799, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32840475

RESUMEN

Members of the family Nairoviridae produce enveloped virions with three single-stranded RNA segments comprising 17.1 to 22.8 kb in total. These viruses are maintained in arthropods and transmitted by ticks to mammals or birds. Crimean-Congo hemorrhagic fever virus is tick-borne and is endemic in most of Asia, Africa, Southern and Eastern Europe whereas Nairobi sheep disease virus, which is also tick-borne, causes lethal haemorrhagic gastroenteritis in small ruminants in Africa and India. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nairoviridae, which is available at ictv.global/report/nairoviridae.


Asunto(s)
Nairovirus/clasificación , Animales , Genoma Viral/genética , Humanos , Nairovirus/genética , Virus ARN/clasificación , Virus ARN/genética
16.
bioRxiv ; 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32607510

RESUMEN

Despite limited genomic diversity, SARS-CoV-2 has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA-sequencing profiles of nasopharyngeal swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with upregulation of antiviral factors such as OAS1-3 and IFIT1-3 , and Th1 chemokines CXCL9/10/11 , as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial cultures replicated the in vivo antiviral host response. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2 , increased as a function of viral load, while transcripts for B cell-specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of Th1 chemokines CXCL9/10/11 and their cognate receptor, CXCR3 , as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B and NK cell-specific transcripts and an increase in inhibitors of NF-κB signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.

17.
Trop Med Infect Dis ; 5(3)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645889

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) infection is identified in the 2018 World Health Organization Research and Development Blueprint and the National Institute of Allergy and Infectious Diseases (NIH/NIAID) priority A list due to its high risk to public health and national security. Tick-borne CCHFV is widespread, found in Europe, Asia, Africa, the Middle East, and the Indian subcontinent. It circulates between ticks and several vertebrate hosts without causing overt disease, and thus can be present in areas without being noticed by the public. As a result, the potential for zoonotic spillover from ticks and animals to humans is high. In contrast to other emerging viruses, human-to-human transmission of CCHFV is typically limited; therefore, prevention of spillover events should be prioritized when considering countermeasures. Several factors in the transmission dynamics of CCHFV, including a complex transmission cycle that involves both ticks and vertebrate hosts, lend themselves to a One Health approach for the prevention and control of the disease that are often overlooked by current strategies. Here, we examine critical focus areas to help mitigate CCHFV spillover, including surveillance, risk assessment, and risk reduction strategies concentrated on humans, animals, and ticks; highlight gaps in knowledge; and discuss considerations for a more sustainable One Health approach to disease control.

18.
Parasit Vectors ; 13(1): 201, 2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32307010

RESUMEN

BACKGROUND: Recent reports have demonstrated the presence of Crimean-Congo hemorrhagic fever virus (CCHFV) genomic material in Hyalomma aegyptium ticks feeding primarily on tortoises belonging to the genus Testudo. This raises the question if these ticks and their hosts play a role in the natural transmission dynamics of CCHFV. However, the studies are limited, and assessing the relevance of H. aegyptium in perpetuating the virus in nature, and a potential spillover to humans remains unknown. This study aimed to detect CCHFV in H. aegyptium ticks and their tortoise hosts in the East Thrace region of Turkey, where H. aegyptium is the most common human-biting tick and where a high density of tortoises of the genus Testudo can be found. METHODS: During the study period, 21 blood samples from different tortoises (2 T. hermanni and 19 T. graeca), 106 tick pools (containing 448 males, 152 females, 93 nymphs and 60 larvae) collected from 65 tortoises (5 T. hermanni and 60 T. graeca), 38 adult unfed questing ticks (25 males and 13 females, screened individually) and 14 pools (containing 8 nymphs and 266 larvae) of immature unfed questing ticks collected from the ground were screened for CCHFV genome by nested PCR and partial genomes sequenced. RESULTS: As a result of the screening of these 179 samples, 17 (9.5%) were detected as positive as follows: 2 of 21 blood samples (9.52%), 13 (containing 18 nymphs in 3 pools, and 52 males and 8 females in 10 pools) of 106 tick pools from tortoises (12.26%), and 2 of 38 adult questing ticks (5.26%). No positive result was determined in 14 pools of immature questing ticks. CONCLUSIONS: Previous studies have shown that reptiles can participate in the transmission of arthropod-borne viruses, but they may contribute to different aspects of the disease ecology and evolution of tick-borne viral pathogens. Our results indicate the presence of CCHFV in questing and feeding H. aegyptium ticks as well as tortoise hosts. This may indicate that CCHFV circulates in a cryptic transmission cycle in addition to the primary transmission cycle that could play a role in the natural dynamic of the virus and the transmission to humans.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea/transmisión , Garrapatas/virología , Tortugas/virología , Zoonosis/virología , Animales , Vectores Arácnidos/virología , ADN Viral , Reservorios de Enfermedades/virología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa , Turquía/epidemiología , Tortugas/parasitología
19.
Brain Behav Immun Health ; 7: 100105, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34589866

RESUMEN

West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients' lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1ß, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae.

20.
Sci Rep ; 9(1): 7755, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123310

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne bunyavirus, can cause a life-threatening hemorrhagic syndrome in humans but not in its animal host. The virus is widely distributed throughout southeastern Europe, the Middle East, Africa, and Asia. Disease management has proven difficult and there are no broadly licensed vaccines or therapeutics. Recombinant vesicular stomatitis viruses (rVSV) expressing foreign glycoproteins (GP) have shown promise as experimental vaccines for several viral hemorrhagic fevers. Here, we developed and assessed a replication competent rVSV vector expressing the CCHFV glycoprotein precursor (GPC), which encodes CCHFV structural glycoproteins. This construct drives strong expression of CCHFV-GP, in vitro. Using these vectors, we vaccinated STAT-1 knock-out mice, an animal model for CCHFV. The vector was tolerated and 100% efficacious against challenge from a clinical strain of CCHFV. Anti-CCHFV-GP IgG and neutralizing antibody titers were observed in surviving animals. This study demonstrates that a rVSV expressing only the CCHFV-GP has the potential to serve as a replication competent vaccine platform against CCHF infections.


Asunto(s)
Glicoproteínas/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Virus de la Estomatitis Vesicular Indiana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Virus de la Fiebre Hemorrágica de Crimea-Congo/patogenicidad , Fiebre Hemorrágica de Crimea/inmunología , Ratones , Ratones Noqueados , Factor de Transcripción STAT1/genética , Vacunación/métodos , Vacunas/inmunología , Virus de la Estomatitis Vesicular Indiana/patogenicidad , Vesiculovirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...