Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507466

RESUMEN

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Asunto(s)
Distrofia Muscular de Duchenne , Nicho de Células Madre , Ratones , Animales , Apelina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Transducción de Señal
2.
Front Cell Dev Biol ; 10: 1056523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523505

RESUMEN

The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.

3.
EMBO J ; 41(14): e110655, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35703167

RESUMEN

Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Células Endoteliales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Desarrollo de Músculos , Fosfatidilinositol 3-Quinasas/metabolismo , Nicho de Células Madre
4.
Elife ; 112022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245177

RESUMEN

Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.


Asunto(s)
Células Satélite del Músculo Esquelético , Células Madre , Envejecimiento , Animales , Diferenciación Celular , Encapsulación Celular , Ratones , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Transcriptoma
5.
Curr Protoc ; 1(10): e263, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34612611

RESUMEN

Skeletal muscle stem cells (MuSCs) reside in a complex niche composed of the muscle fiber plasma membrane and the laminin-rich basal lamina surrounded by the microvasculature, as well as different supportive cell types such as fibro-adipogenic progenitors residing in the interstitial extracellular matrix. Within the first few hours after tissue damage, MuSCs undergo cytoskeletal rearrangements and transcriptional changes that prime the cells for activation. Due to their time-consuming nature, enzymatic methods for liberation of single muscle fibers with fully quiescent MuSCs are challenging. Moreover, during enzymatic digestion, important niche components including the microvasculature and the collagenous interstitial matrix are destroyed. Here, we provide a method for the visualization of MuSCs on muscle fibers in their intact niche. Our method relies on mechanical teasing of fiber bundles from fixed skeletal muscles. We demonstrate that teased muscle fiber bundles allow the investigator to capture a representative snapshot of the MuSC niche in skeletal muscle, and outline how stem cell morphology and different microenvironmental components can be visualized. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of fiber bundles Basic Protocol 2: Immunofluorescence staining of MuSCs on fiber bundles Support Protocol: Preparation of Sylgard dishes.


Asunto(s)
Músculo Esquelético , Nicho de Células Madre , Adipogénesis , Mioblastos , Células Madre
7.
Cell Stem Cell ; 24(3): 433-446.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686765

RESUMEN

Research on age-related regenerative failure of skeletal muscle has extensively focused on the phenotypes of muscle stem cells (MuSCs). In contrast, the impact of aging on regulatory cells in the MuSC niche remains largely unexplored. Here, we demonstrate that aging impairs the function of mouse fibro-adipogenic progenitors (FAPs) and thereby indirectly affects the myogenic potential of MuSCs. Using transcriptomic profiling, we identify WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as a FAP-derived matricellular signal that is lost during aging. WISP1 is required for efficient muscle regeneration and controls the expansion and asymmetric commitment of MuSCs through Akt signaling. Transplantation of young FAPs or systemic treatment with WISP1 restores the myogenic capacity of MuSCs in aged mice and rescues skeletal muscle regeneration. Our work establishes that loss of WISP1 from FAPs contributes to MuSC dysfunction in aged skeletal muscles and demonstrates that this mechanism can be targeted to rejuvenate myogenesis.


Asunto(s)
Adipocitos/metabolismo , Envejecimiento/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Adipocitos/citología , Adipogénesis , Animales , Proteínas CCN de Señalización Intercelular/deficiencia , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas/deficiencia , Células Madre/citología
8.
Curr Top Dev Biol ; 126: 23-65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29305000

RESUMEN

The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.


Asunto(s)
Músculo Esquelético/fisiología , Enfermedades Musculares/fisiopatología , Células Satélite del Músculo Esquelético/fisiología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Músculo Esquelético/citología , Enfermedades Musculares/patología , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Madre/citología
9.
Cell Rep ; 18(10): 2320-2330, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273449

RESUMEN

Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo) family of secreted proteins potently activates the canonical Wnt/ß-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/ß-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/ß-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.


Asunto(s)
Mioblastos/citología , Mioblastos/metabolismo , Trombospondinas/metabolismo , Vía de Señalización Wnt , Animales , Diferenciación Celular , Fusión Celular , Proliferación Celular , Células Cultivadas , Ratones Endogámicos C57BL , Desarrollo de Músculos , Factor de Transcripción PAX7/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , beta Catenina/metabolismo
10.
Nat Med ; 22(8): 897-905, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376579

RESUMEN

Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism.


Asunto(s)
Envejecimiento/metabolismo , Fibronectinas/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Músculo Esquelético/metabolismo , Regeneración/genética , Nicho de Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Western Blotting , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Citometría de Flujo , Integrinas/metabolismo , Ratones , Músculo Esquelético/citología , Reacción en Cadena de la Polimerasa
11.
Skelet Muscle ; 5: 39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635949

RESUMEN

BACKGROUND: The mammalian esophageal musculature is unique in that it makes a transition from smooth to skeletal muscle, with most of this process occurring after birth. In order to better understand the mechanisms that control esophageal musculature development, we investigated the roles in this process of the paired box transcription factor, PAX7, a principal regulator of skeletal myogenic progenitor cells. Previous studies showed that Pax7 is important for determining the esophageal muscle composition. RESULTS: We characterized the postnatal development of the esophageal musculature in Pax7 (-/-) mice by analyzing morphology, muscle composition, and the expression of markers of myogenesis, cell proliferation, and apoptosis. Pax7 (-/-) mice displayed megaesophagus with a severe defect in the postnatal developmental process whereby esophageal smooth muscle is replaced by skeletal muscle. Pax7 (-/-) esophagi have substantially reduced skeletal muscle, most likely due to diminished proliferation and premature differentiation of skeletal muscle precursor cells. This impaired the proximal-to-distal progression of skeletal myogenesis and indirectly affected the patterning of the smooth muscle-containing portion of the esophageal musculature. CONCLUSIONS: Postnatal patterning of the esophageal musculature appears to require robust, PAX7-dependent cell proliferation to drive the proximal-to-distal progression of skeletal myogenesis. This process in turn influences distal smooth muscle morphogenesis and development of the mature pattern of the esophageal musculature.

12.
Nat Med ; 21(12): 1455-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26569381

RESUMEN

Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.


Asunto(s)
División Celular Asimétrica , Polaridad Celular , Distrofina/metabolismo , Músculo Esquelético/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Separación Celular , Distrofina/deficiencia , Citometría de Flujo , Ratones Endogámicos mdx , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Huso Acromático/metabolismo
13.
Compr Physiol ; 5(3): 1027-59, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26140708

RESUMEN

Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Regeneración , Células Satélite del Músculo Esquelético/citología , Animales , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/metabolismo
15.
Biochem J ; 466(1): 123-35, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25431931

RESUMEN

The protein mammalian target of rapamycin (mTOR) is a serine/threonine kinase regulating a number of biochemical pathways controlling cell growth. mTOR exists in two complexes termed mTORC1 and mTORC2. Regulatory associated protein of mTOR (raptor) is associated with mTORC1 and is essential for its function. Ablation of raptor in skeletal muscle results in several phenotypic changes including decreased life expectancy, increased glycogen deposits and alterations of the twitch kinetics of slow fibres. In the present paper, we show that in muscle-specific raptor knockout (RamKO), the bulk of glycogen phosphorylase (GP) is mainly associated in its cAMP-non-stimulated form with sarcoplasmic reticulum (SR) membranes. In addition, 3[H]-ryanodine and 3[H]-PN200-110 equilibrium binding show a ryanodine to dihydropyridine receptors (DHPRs) ratio of 0.79 and 1.35 for wild-type (WT) and raptor KO skeletal muscle membranes respectively. Peak amplitude and time to peak of the global calcium transients evoked by supramaximal field stimulation were not different between WT and raptor KO. However, the increase in the voltage sensor-uncoupled RyRs leads to an increase of both frequency and mass of elementary calcium release events (ECRE) induced by hyper-osmotic shock in flexor digitorum brevis (FDB) fibres from raptor KO. The present study shows that the protein composition and function of the molecular machinery involved in skeletal muscle excitation-contraction (E-C) coupling is affected by mTORC1 signalling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Canales de Calcio Tipo L/genética , Complejos Multiproteicos/genética , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Potenciales Evocados/fisiología , Acoplamiento Excitación-Contracción/fisiología , Regulación de la Expresión Génica , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Contracción Isométrica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Proteína Reguladora Asociada a mTOR , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
16.
Nat Med ; 20(10): 1174-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194569

RESUMEN

Diminished regenerative capacity of skeletal muscle occurs during adulthood. We identified a reduction in the intrinsic capacity of mouse adult satellite cells to contribute to muscle regeneration and repopulation of the niche. Gene expression analysis identified higher expression of JAK-STAT signaling targets in 3-week [corrected] 18-month-old mice [corrected]. Knockdown of Jak2 or Stat3 significantly stimulated symmetric satellite stem cell divisions on cultured myofibers. Genetic knockdown of Jak2 or Stat3 expression in prospectively isolated satellite cells markedly enhanced their ability to repopulate the satellite cell niche after transplantation into regenerating tibialis anterior muscle. Pharmacological inhibition of Jak2 and Stat3 activity similarly stimulated symmetric expansion of satellite cells in vitro and their engraftment in vivo. Intramuscular injection of these drugs resulted in a marked enhancement of muscle repair and force generation after cardiotoxin injury. Together these results reveal age-related intrinsic properties that functionally distinguish satellite cells and suggest a promising therapeutic avenue for the treatment of muscle-wasting diseases.


Asunto(s)
Quinasas Janus/antagonistas & inhibidores , Factores de Transcripción STAT/antagonistas & inhibidores , Células Satélite del Músculo Esquelético/fisiología , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Femenino , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , ARN Interferente Pequeño/genética , Regeneración/efectos de los fármacos , Regeneración/fisiología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Células Satélite del Músculo Esquelético/trasplante , Transducción de Señal
17.
J Cell Biol ; 205(1): 97-111, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24711502

RESUMEN

Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors through activation of Dvl2 and the small GTPase Rac1. Importantly, these effects can be exploited to potentiate the outcome of myogenic cell transplantation into dystrophic muscles. We observed that a short Wnt7a treatment markedly stimulated tissue dispersal and engraftment, leading to significantly improved muscle function. Moreover, myofibers at distal sites that fused with Wnt7a-treated cells were hypertrophic, suggesting that the transplanted cells deliver activated Wnt7a/Fzd7 signaling complexes to recipient myofibers. Taken together, we describe a viable and effective ex vivo cell modulation process that profoundly enhances the efficacy of stem cell therapy for skeletal muscle.


Asunto(s)
Movimiento Celular , Fuerza Muscular , Músculo Esquelético/cirugía , Distrofias Musculares/cirugía , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/trasplante , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fusión Celular , Línea Celular , Polaridad Celular , Modelos Animales de Enfermedad , Proteínas Dishevelled , Endocitosis , Receptores Frizzled/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hipertrofia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Mioblastos Esqueléticos/patología , Neuropéptidos/metabolismo , Factor de Transcripción PAX7/genética , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Proteínas Wnt/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína Fluorescente Roja
19.
EMBO Rep ; 14(12): 1062-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24232182

RESUMEN

Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre , Animales , Humanos , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Células Satélite del Músculo Esquelético/fisiología
20.
Nat Commun ; 4: 2869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24287629

RESUMEN

Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.


Asunto(s)
Músculo Esquelético/metabolismo , Proteínas Wnt/metabolismo , Secuencias de Aminoácidos , Animales , Femenino , Receptores Frizzled , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/química , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Eliminación de Secuencia , Transducción de Señal , Proteínas Wnt/química , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA