Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35335825

RESUMEN

Combinatorial approach has been widely recognized as a powerful strategy to develop new-higher performance materials and shed the light on the stoichiometry-dependent properties of known systems. Herein, we take advantage of the unique features of chemical beam vapor deposition to fabricate compositionally graded Na1+xTaO3±Î´ thin films with −0.6 < x < 0.5. Such a varied composition was enabled by the ability of the employed technique to deliver and combine an extensive range of precursors flows over the same deposition area. The film growth occurred in a complex process, where precursor absolute flows, flow ratios, and substrate temperature played a role. The deviation of the measured Na/Ta ratios from those predicted by flow simulations suggests that a chemical-reaction limited regime underlies the growth mechanism and highlights the importance of the Ta precursor in assisting the decomposition of the Na one. The crystallinity was observed to be strongly dependent on its stoichiometry. High under-stoichiometries (e.g., Na0.5TaO3−δ) compared to NaTaO3 were detrimental for the formation of a perovskite framework, owing to the excessive amount of sodium vacancies and oxygen vacancies. Conversely, a well-crystallized orthorhombic perovskite structure peculiar of NaTaO3 was observed from mildly under-stoichiometric (e.g., Na0.9TaO3−δ) to highly over-stoichiometric (e.g., Na1.5TaO3+δ) compositions.

2.
Elife ; 112022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982033

RESUMEN

Can direct stimulation of primate V1 substitute for a visual stimulus and mimic its perceptual effect? To address this question, we developed an optical-genetic toolkit to 'read' neural population responses using widefield calcium imaging, while simultaneously using optogenetics to 'write' neural responses into V1 of behaving macaques. We focused on the phenomenon of visual masking, where detection of a dim target is significantly reduced by a co-localized medium-brightness mask (Cornsweet and Pinsker, 1965; Whittle and Swanston, 1974). Using our toolkit, we tested whether V1 optogenetic stimulation can recapitulate the perceptual masking effect of a visual mask. We find that, similar to a visual mask, low-power optostimulation can significantly reduce visual detection sensitivity, that a sublinear interaction between visual- and optogenetic-evoked V1 responses could account for this perceptual effect, and that these neural and behavioral effects are spatially selective. Our toolkit and results open the door for further exploration of perceptual substitutions by direct stimulation of sensory cortex.


Asunto(s)
Optogenética/métodos , Enmascaramiento Perceptual/fisiología , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Animales , Macaca mulatta , Masculino , Neuronas/fisiología , Prueba de Estudio Conceptual , Corteza Visual/fisiología
3.
Neuron ; 108(6): 1075-1090.e6, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33080229

RESUMEN

Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.


Asunto(s)
Encéfalo , Neuronas , Optogenética/métodos , Primates , Animales , Neurociencias
5.
Neuron ; 100(6): 1504-1512.e4, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30392796

RESUMEN

Humans have remarkable scale-invariant visual capabilities. For example, our orientation discrimination sensitivity is largely constant over more than two orders of magnitude of variations in stimulus spatial frequency (SF). Orientation-selective V1 neurons are likely to contribute to orientation discrimination. However, because at any V1 location neurons have a limited range of receptive field (RF) sizes, we predict that at low SFs V1 neurons will carry little orientation information. If this were the case, what could account for the high behavioral sensitivity at low SFs? Using optical imaging in behaving macaques, we show that, as predicted, V1 orientation-tuned responses drop rapidly with decreasing SF. However, we reveal a surprising coarse-scale signal that corresponds to the projection of the luminance layout of low-SF stimuli to V1's retinotopic map. This homeomorphic and distributed representation, which carries high-quality orientation information, is likely to contribute to our striking scale-invariant visual capabilities.


Asunto(s)
Mapeo Encefálico , Sensibilidad de Contraste/fisiología , Neuronas/fisiología , Orientación , Corteza Visual/fisiología , Animales , Discriminación en Psicología , Macaca mulatta , Masculino , Estimulación Luminosa , Vías Visuales/fisiología
6.
PLoS Comput Biol ; 13(5): e1005543, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28542191

RESUMEN

Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Modelos Neurológicos , Vigilia/fisiología , Animales , Gatos , Biología Computacional , Haplorrinos , Neuronas/fisiología
7.
ACS Comb Sci ; 18(3): 154-61, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26901528

RESUMEN

An innovative deposition system has been developed to construct complex material thin films from single-element precursors by chemical beam vapor deposition (CBVD). It relies on well distributed punctual sources that emit individually controlled precursor beams toward the substrate under high vacuum conditions combined with well designed cryo-panel surfaces that avoid secondary precursor sources. In this configuration the impinging flows of all precursors can be calculated at any substrate point considering the controlled angular distribution of the emitted beams and the ballistic trajectory of the molecules. The flow simulation is described in details. The major advantage of the deposition system is its ability to switch between several possible controlled combinatorial configurations, in which the substrate is exposed to a wide range of flow compositions from the different precursors, and a uniform configuration, in which the substrate is exposed to a homogeneous flow, even on large substrates, with high precursor use efficiency. Agreement between calculations and depositions carried out in various system configurations and for single, binary, or ternary oxides in mass transfer limited regime confirms that the distribution of incoming precursors on the substrate follows the theoretical models. Additionally, for some selected precursors and in some selected conditions, almost 100% of the precursor impinging on the substrate is incorporated to the deposit. The results of this work confirm the potentialities of CBVD both as a research tool to investigate efficiently deposition processes and as a fabrication tool to deposit on large surfaces.


Asunto(s)
Óxidos/química , Técnicas Químicas Combinatorias/instrumentación , Diseño de Equipo , Gases/química , Semiconductores , Propiedades de Superficie , Volatilización
8.
J Neurophysiol ; 115(1): 434-44, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26445864

RESUMEN

The repeated presentation of an identical visual stimulus in the receptive field of a neuron may evoke different spiking patterns at each trial. Probabilistic methods are essential to understand the functional role of this variance within the neural activity. In that case, a Poisson process is the most common model of trial-to-trial variability. For a Poisson process, the variance of the spike count is constrained to be equal to the mean, irrespective of the duration of measurements. Numerous studies have shown that this relationship does not generally hold. Specifically, a majority of electrophysiological recordings show an "overdispersion" effect: responses that exhibit more intertrial variability than expected from a Poisson process alone. A model that is particularly well suited to quantify overdispersion is the Negative-Binomial distribution model. This model is well-studied and widely used but has only recently been applied to neuroscience. In this article, we address three main issues. First, we describe how the Negative-Binomial distribution provides a model apt to account for overdispersed spike counts. Second, we quantify the significance of this model for any neurophysiological data by proposing a statistical test, which quantifies the odds that overdispersion could be due to the limited number of repetitions (trials). We apply this test to three neurophysiological data sets along the visual pathway. Finally, we compare the performance of this model to the Poisson model on a population decoding task. We show that the decoding accuracy is improved when accounting for overdispersion, especially under the hypothesis of tuned overdispersion.


Asunto(s)
Distribución Binomial , Cuerpos Geniculados/fisiología , Modelos Neurológicos , Neuronas/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Femenino , Macaca mulatta , Masculino , Ratones , Estimulación Luminosa , Distribución de Poisson
10.
Rev Sci Instrum ; 80(9): 093706, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19791943

RESUMEN

We report on a heterodyne interferometric scanning near-field optical microscope developed for characterizing, at the nanometric scale, refractive index variations in thin films. An optical lateral resolution of 80 nm (lambda/19) and a precision smaller than 10(-4) on the refractive index difference have been achieved. This setup is suitable for a wide set of thin films, ranging from periodic to heterogeneous samples, and turns out to be a very promising tool for determining the optical homogeneity of thin films developed for nanophotonics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA