Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496508

RESUMEN

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338990

RESUMEN

The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Músculo Esquelético , Ratones , Animales , Fosforilación , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal , Envejecimiento/genética
3.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251863

RESUMEN

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Asunto(s)
Células-Madre Neurales , Proteoglicanos , Ratones , Animales , Proteoglicanos/metabolismo , Sulfatos de Condroitina , Proteoglicanos Tipo Condroitín Sulfato , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Madre Neurales/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1226808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664863

RESUMEN

Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease with hepatic inflammation and fibrosis for which there is currently no drug treatment. This study determined whether an indoline derivative, AN1284, which significantly reduced damage in a model of acute liver disease, can reverse steatosis and fibrosis in mice with pre-existing NASH and explore its mechanism of action. The mouse model of dietary-induced NASH reproduces most of the liver pathology seen in human subjects. This was confirmed by RNA-sequencing analysis. The Western diet, given for 4 months, caused steatosis, inflammation, and liver fibrosis. AN1284 (1 mg or 5 mg/kg/day) was administered for the last 2 months of the diet by micro-osmotic-pumps (mps). Both doses significantly decreased hepatic damage, liver weight, hepatic fat content, triglyceride, serum alanine transaminase, and fibrosis. AN1284 (1 mg/kg/day) given by mps or in the drinking fluid significantly reduced fibrosis produced by carbon tetrachloride injections. In human HUH7 hepatoma cells incubated with palmitic acid, AN1284 (2.1 and 6.3 ng/ml), concentrations compatible with those in the liver of mice treated with AN1284, decreased lipid formation by causing nuclear translocation of the aryl hydrocarbon receptor (AhR). AN1284 downregulated fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and upregulated Acyl-CoA Oxidase 1 and Cytochrome P450-a1, genes involved in lipid metabolism. In conclusion, chronic treatment with AN1284 (1mg/kg/day) reduced pre-existing steatosis and fibrosis through AhR, which affects several contributors to the development of fatty liver disease. Additional pathways are also influenced by AN1284 treatment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Lipogénesis/genética , Receptores de Hidrocarburo de Aril/genética , Hepatocitos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Inflamación
5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761990

RESUMEN

Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies.


Asunto(s)
Vesículas Extracelulares , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/genética , Interferón gamma , Linfocitos T , Apoptosis/genética
6.
Haematologica ; 108(12): 3359-3371, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37381778

RESUMEN

Systemic light chain amyloidosis (AL) is a clonal plasma cell disorder characterized by the deposition of misfolded immunoglobulin light chains (LC) as insoluble fibrils in organs. The lack of suitable models has hindered the investigation of the disease mechanisms. Our aim was to establish AL LC-producing plasma cell lines and use them to investigate the biology of the amyloidogenic clone. We used lentiviral vectors to generate cell lines expressing LC from patients suffering from AL amyloidosis. The AL LC-producing cell lines showed a significant decrease in proliferation, cell cycle arrest, and an increase in apoptosis and autophagy as compared with the multiple myeloma LC-producing cells. According to the results of RNA sequencing the AL LC-producing lines showed higher mitochondrial oxidative stress, and decreased activity of the Myc and cholesterol pathways. The neoplastic behavior of plasma cells is altered by the constitutive expression of amyloidogenic LC causing intracellular toxicity. This observation may explain the disparity in the malignant behavior of the amyloid clone compared to the myeloma clone. These findings should enable future in vitro studies and help delineate the unique cellular pathways of AL, thus expediting the development of specific treatments for patients with this disorder.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Mieloma Múltiple , Humanos , Células Plasmáticas/patología , Supervivencia Celular , Amiloidosis/genética , Amiloidosis/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Amiloide/metabolismo , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Mieloma Múltiple/patología
7.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37207337

RESUMEN

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Asunto(s)
Proteínas Protozoarias , Trypanosoma brucei brucei , Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Telómero/genética , Telómero/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Proteínas Protozoarias/metabolismo , Ensamble y Desensamble de Cromatina
8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555109

RESUMEN

Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FIO2 followed by 21% FIO2) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and 18F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Apnea Obstructiva del Sueño , Masculino , Animales , Ratones , Resistencia a la Insulina/fisiología , Síndrome Metabólico/complicaciones , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Obesidad/complicaciones , Insulina , Glucosa/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Tejido Adiposo Pardo/metabolismo , Sueño
9.
Stem Cell Reports ; 17(12): 2732-2744, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36427492

RESUMEN

Biological sex is a fundamental trait influencing development, reproduction, pathogenesis, and medical treatment outcomes. Modeling sex differences is challenging because of the masking effect of genetic variability and the hurdle of differentiating chromosomal versus hormonal effects. In this work we developed a cellular model to study sex differences in humans. Somatic cells from a mosaic Klinefelter syndrome patient were reprogrammed to generate isogenic induced pluripotent stem cell (iPSC) lines with different sex chromosome complements: 47,XXY/46,XX/46,XY/45,X0. Transcriptional analysis of the hiPSCs revealed novel and known genes and pathways that are sexually dimorphic in the pluripotent state and during early neural development. Female hiPSCs more closely resembled the naive pluripotent state than their male counterparts. Moreover, the system enabled differentiation between the contributions of X versus Y chromosome to these differences. Taken together, isogenic hiPSCs present a novel platform for studying sex differences in humans and bear potential to promote gender-specific medicine in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Femenino , Masculino , Caracteres Sexuales , Células Cultivadas , Diferenciación Celular/genética
10.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232513

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Acetato de Desoxicorticosterona , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Antiinflamatorios/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/terapia , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas
11.
J Hepatol ; 77(6): 1631-1641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988690

RESUMEN

BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células Madre , Transducción de Señal , Carcinogénesis , ARN , Conductos Biliares Intrahepáticos , Factores de Transcripción Forkhead
12.
Stem Cell Reports ; 17(9): 2050-2063, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35961311

RESUMEN

The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models' functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
13.
EMBO Mol Med ; 14(8): e15653, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35785521

RESUMEN

Irradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6+ -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6-/- or IL-1R-/- mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6-/- mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.


Asunto(s)
Radiodermatitis , Receptores CCR6 , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Ratones , Receptores CCR6/genética , Receptores CCR6/metabolismo , Transcriptoma
14.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456968

RESUMEN

Cytochrome c oxidase (COX), a multimeric protein complex, is the final electron acceptor in the mitochondrial electron transfer chain. Primary COX deficiency, caused by mutations in either mitochondrial DNA or nuclear-encoded genes, is a heterogenous group of mitochondrial diseases with a wide range of presentations, ranging from fatal infantile to subtler. We previously reported a patient with primary COX deficiency due to a pathogenic variant in COX4I1 (encoding the common isoform of COX subunit 4, COX4-1), who presented with bone marrow failure, genomic instability, and short stature, mimicking Fanconi anemia (FA). In the present study, we demonstrated that accumulative DNA damage coincided primarily with proliferative cells in the patient's fibroblasts and in COX4i1 knockdown cells. Expression analysis implicated a reduction in DNA damage response pathways, which was verified by demonstrating impaired recovery from genotoxic insult and decreased DNA repair. The premature senescence of the COX4-1-deficient cells prevented us from undertaking additional studies; nevertheless, taken together, our results indicate replicative stress and impaired nuclear DNA damage response in COX4-1 deficiency. Interestingly, our in vitro findings recapitulated the patient's presentation and present status.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Enfermedades Mitocondriales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos
15.
Mol Metab ; 60: 101482, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364299

RESUMEN

OBJECTIVE: Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS: 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS: Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17ß-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS: OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.


Asunto(s)
Estrógenos , Hígado , Animales , Estrógenos/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Triglicéridos/metabolismo , Aumento de Peso
16.
Gut ; 71(2): 345-355, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33649045

RESUMEN

OBJECTIVE: Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development. DESIGN: To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment. RESULTS: We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma. CONCLUSIONS: These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.


Asunto(s)
Adenocarcinoma/patología , Senescencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología , Senoterapéuticos/uso terapéutico , Adenocarcinoma/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/metabolismo , Lesiones Precancerosas/metabolismo
17.
Cells ; 10(2)2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672589

RESUMEN

Cytochrome-c-oxidase (COX) subunit 4 (COX4) plays important roles in the function, assembly and regulation of COX (mitochondrial respiratory complex 4), the terminal electron acceptor of the oxidative phosphorylation (OXPHOS) system. The principal COX4 isoform, COX4-1, is expressed in all tissues, whereas COX4-2 is mainly expressed in the lungs, or under hypoxia and other stress conditions. We have previously described a patient with a COX4-1 defect with a relatively mild presentation compared to other primary COX deficiencies, and hypothesized that this could be the result of a compensatory upregulation of COX4-2. To this end, COX4-1 was downregulated by shRNAs in human foreskin fibroblasts (HFF) and compared to the patient's cells. COX4-1, COX4-2 and HIF-1α were detected by immunocytochemistry. The mRNA transcripts of both COX4 isoforms and HIF-1 target genes were quantified by RT-qPCR. COX activity and OXPHOS function were measured by enzymatic and oxygen consumption assays, respectively. Pathways were analyzed by CEL-Seq2 and by RT-qPCR. We demonstrated elevated COX4-2 levels in the COX4-1-deficient cells, with a concomitant HIF-1α stabilization, nuclear localization and upregulation of the hypoxia and glycolysis pathways. We suggest that COX4-2 and HIF-1α are upregulated also in normoxia as a compensatory mechanism in COX4-1 deficiency.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Regulación hacia Arriba , Hipoxia de la Célula , Núcleo Celular/metabolismo , Metabolismo Energético , Glucólisis , Humanos , Isoformas de Proteínas/metabolismo
18.
Oncotarget ; 11(6): 574-588, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32110278

RESUMEN

Sepsis is an excessive, dysregulated immune response to infection that activates inflammatory and coagulation cascades, which may lead to tissue injury, multiple organ dysfunction syndrome and death. Millions of individuals die annually of sepsis. To date, the only treatment available is antibiotics, drainage of the infection source when possible, and organ support in intensive care units. Numerous previous attempts to develop therapeutic treatments, directed at discreet targets of the sepsis cascade, could not cope with the complex pathophysiology of sepsis and failed. Here we describe a novel treatment, based on empty capsids of SV40 (nanocapsids - NCs). Studies in a severe rat sepsis model showed that pre-treatment by NCs led to a dramatic increase in survival, from zero to 75%. Transcript analyses (RNAseq) demonstrated that the NC treatment is a paradigm shift. The NCs affect multiple facets of biological functions. The affected genes are modified with time, adjusting to the recovery processes. The NCs effect on normal control rats was negligible. The study shows that the NCs are capable of coping with diseases with intricate pathophysiology. Further studies are needed to determine whether when applied after sepsis onset, the NCs still improve outcome.

19.
J Neuromuscul Dis ; 7(2): 119-136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31985472

RESUMEN

BACKGROUND: Mutations in GNE cause a recessive, adult onset myopathy characterized by slowly progressive distal and proximal muscle weakness. Knock-in mice carrying the most frequent mutation in GNE myopathy patients, GneM743T/M743T, usually die few days after birth from severe renal failure, with no muscle phenotype. However, a spontaneous sub-colony remains healthy throughout a normal lifespan without any kidney or muscle pathology. OBJECTIVE: We attempted to decipher the molecular mechanisms behind these phenotypic differences and to determine the mechanisms preventing the kidney and muscles from disease. METHODS: We analyzed the transcriptome and proteome of kidneys and muscles of sick and healthy GneM743T/M743T mice. RESULTS: The sick GneM743T/M743T kidney was characterized by up-regulation of extra-cellular matrix degradation related processes and by down-regulation of oxidative phosphorylation and respiratory electron chain pathway, that was also observed in the asymptomatic muscles. Surprisingly, the healthy kidneys of the GneM743T/M743T mice were characterized by up-regulation of hallmark muscle genes. In addition the asymptomatic muscles of the sick GneM743T/M743T mice showed upregulation of transcription and translation processes. CONCLUSIONS: Overexpression of muscle physiology genes in healthy GneM743T/M743T mice seems to define the protecting mechanism in these mice. Furthermore, the strong involvement of muscle related genes in kidney may bridge the apparent phenotypic gap between GNE myopathy and the knock-in GneM743T/M743T mouse model and provide new directions in the study of GNE function in health and disease.


Asunto(s)
Miopatías Distales/genética , Miopatías Distales/metabolismo , Riñón/metabolismo , Complejos Multienzimáticos/genética , Músculo Esquelético/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Proteómica , Análisis de Secuencia de ARN , Regulación hacia Arriba
20.
Sci Adv ; 6(3): eaax2861, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998832

RESUMEN

The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Algoritmos , Animales , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Endocitosis , Xenoinjertos , Humanos , Ratones , Modelos Teóricos , Metástasis de la Neoplasia , Neoplasias/patología , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...