Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(42): 11718-11726, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37920356

RESUMEN

Living organisms carry out a wide range of remarkable functions, including the synthesis of thousands of simple and complex chemical structures for cellular growth and maintenance. The manipulation of this reaction network has allowed for the genetic engineering of cells for targeted chemical synthesis, but it remains challenging to alter the program underlying their fundamental chemical behavior. By taking advantage of the unique ability of living systems to use evolution to find solutions to complex problems, we have achieved yields of up to ∼95% for three C4 commodity chemicals, n-butanol, 1,3-butanediol, and 4-hydroxy-2-butanone. Genomic sequencing of the evolved strains identified pcnB and rpoBC as two gene loci that are able to alter carbon flow by remodeling the transcriptional landscape of the cell, highlighting the potential of synthetic pathways as a tool to identify metabolic control points.

2.
J Lipid Res ; 62: 100051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33631213

RESUMEN

Oxysterols are oxidized derivatives of cholesterol that play regulatory roles in lipid biosynthesis and homeostasis. How oxysterol signaling coordinates different lipid classes such as sterols and triglycerides remains incompletely understood. Here, we show that 4ß-hydroxycholesterol (HC) (4ß-HC), a liver and serum abundant oxysterol of poorly defined functions, is a potent and selective inducer of the master lipogenic transcription factor, SREBP1c, but not the related steroidogenic transcription factor SREBP2. By correlating tracing of lipid synthesis with lipogenic gene expression profiling, we found that 4ß-HC acts as a putative agonist for the liver X receptor (LXR), a sterol sensor and transcriptional regulator previously linked to SREBP1c activation. Unique among the oxysterol agonists of the LXR, 4ß-HC induced expression of the lipogenic program downstream of SREBP1c and triggered de novo lipogenesis both in primary hepatocytes and in the mouse liver. In addition, 4ß-HC acted in parallel to insulin-PI3K-dependent signaling to stimulate triglyceride synthesis and lipid-droplet accumulation. Thus, 4ß-HC is an endogenous regulator of de novo lipogenesis through the LXR-SREBP1c axis.


Asunto(s)
Proteína 1 de Unión a los Elementos Reguladores de Esteroles
3.
Cell ; 183(1): 46-61.e21, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941802

RESUMEN

Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular , Células HEK293 , Homeostasis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mitocondrias , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
mSphere ; 4(6)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722991

RESUMEN

Gram-negative bacteria in the order Rickettsiales have an obligate intracellular growth requirement, and some species cause human diseases such as typhus and spotted fever. The bacteria have evolved a dependence on essential nutrients and metabolites from the host cell as a consequence of extensive genome reduction. However, it remains largely unknown which nutrients they acquire and whether their metabolic dependency can be exploited therapeutically. Here, we describe a genetic rewiring of bacterial isoprenoid biosynthetic pathways in the Rickettsiales that has resulted from reductive genome evolution. Furthermore, we investigated whether the spotted fever group Rickettsia species Rickettsia parkeri scavenges isoprenoid precursors directly from the host. Using targeted mass spectrometry, we found that infection caused decreases in host isoprenoid products and concomitant increases in bacterial isoprenoid metabolites. Additionally, we report that treatment of infected cells with statins, which inhibit host isoprenoid synthesis, prohibited bacterial growth. We show that growth inhibition correlates with changes in bacterial size and shape that mimic those caused by antibiotics that inhibit peptidoglycan biosynthesis, suggesting that statins lead to an inhibition of cell wall synthesis. Altogether, our results describe a potential Achilles' heel of obligate intracellular pathogens that can potentially be exploited with host-targeted therapeutics that interfere with metabolic pathways required for bacterial growth.IMPORTANCE Obligate intracellular pathogens, which include viruses as well as certain bacteria and eukaryotes, are a subset of infectious microbes that are metabolically dependent on and unable to grow outside an infected host cell because they have lost or lack essential biosynthetic pathways. In this study, we describe a metabolic dependency of the bacterial pathogen Rickettsia parkeri on host isoprenoid molecules that are used in the biosynthesis of downstream products, including cholesterol, steroid hormones, and heme. Bacteria make products from isoprenoids, such as an essential lipid carrier for making the bacterial cell wall. We show that bacterial metabolic dependency can represent a potential Achilles' heel and that inhibiting host isoprenoid biosynthesis with the FDA-approved statin class of drugs inhibits bacterial growth by interfering with the integrity of the cell wall. This work supports the potential to treat infections by obligate intracellular pathogens through inhibition of host biosynthetic pathways that are susceptible to parasitism.


Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Rickettsia/crecimiento & desarrollo , Rickettsia/metabolismo , Terpenos/metabolismo , Animales , Anticolesterolemiantes/metabolismo , Chlorocebus aethiops , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Terpenos/antagonistas & inhibidores , Células Vero
6.
Nat Cell Biol ; 21(10): 1206-1218, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548609

RESUMEN

Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes by the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signalling are unknown. Here, we show that oxysterol binding protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA and VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, the recruitment of mTORC1 by the Rag GTPases is inhibited owing to impaired transport of cholesterol to lysosomes. By contrast, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by the loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signalling and restores autophagic function in cellular models of Niemann-Pick type C (NPC). Thus, ER-lysosome contacts are signalling hubs that enable cholesterol sensing by mTORC1, and targeting the sterol-transfer activity of these signalling hubs could be beneficial in patients with NPC.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Receptores de Esteroides/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Proteína Niemann-Pick C1 , Receptores de Esteroides/genética , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Nat Chem Biol ; 15(8): 776-785, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285595

RESUMEN

Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cysteine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotemporal dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling.


Asunto(s)
Autofagia/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Autofagia/fisiología , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Estructura Molecular , Proteínas Proto-Oncogénicas c-akt , Pirazoles/farmacología
8.
Cell Chem Biol ; 26(7): 1027-1035.e22, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31080076

RESUMEN

Parthenolide, a natural product from the feverfew plant and member of the large family of sesquiterpene lactones, exerts multiple biological and therapeutic activities including anti-inflammatory and anti-cancer effects. Here, we further study the parthenolide mechanism of action using activity-based protein profiling-based chemoproteomic platforms to map additional covalent targets engaged by parthenolide in human breast cancer cells. We find that parthenolide, as well as other related exocyclic methylene lactone-containing sesquiterpenes, covalently modify cysteine 427 of focal adhesion kinase 1 (FAK1), leading to impairment of FAK1-dependent signaling pathways and breast cancer cell proliferation, survival, and motility. These studies reveal a functional target exploited by members of a large family of anti-cancer natural products.


Asunto(s)
Neoplasias de la Mama/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Sesquiterpenos/metabolismo , Productos Biológicos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Lactonas , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Tanacetum parthenium
9.
Proc Natl Acad Sci U S A ; 115(29): E6937-E6945, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967167

RESUMEN

N-acyl amino acids (NAAs) are a structurally diverse class of bioactive signaling lipids whose endogenous functions have largely remained uncharacterized. To clarify the physiologic roles of NAAs, we generated mice deficient in the circulating enzyme peptidase M20 domain-containing 1 (PM20D1). Global PM20D1-KO mice have dramatically reduced NAA hydrolase/synthase activities in tissues and blood with concomitant bidirectional dysregulation of endogenous NAAs. Compared with control animals, PM20D1-KO mice exhibit a variety of metabolic and pain phenotypes, including insulin resistance, altered body temperature in cold, and antinociceptive behaviors. Guided by these phenotypes, we identify N-oleoyl-glutamine (C18:1-Gln) as a key PM20D1-regulated NAA. In addition to its mitochondrial uncoupling bioactivity, C18:1-Gln also antagonizes certain members of the transient receptor potential (TRP) calcium channels including TRPV1. Direct administration of C18:1-Gln to mice is sufficient to recapitulate a subset of phenotypes observed in PM20D1-KO animals. These data demonstrate that PM20D1 is a dominant enzymatic regulator of NAA levels in vivo and elucidate physiologic functions for NAA signaling in metabolism and nociception.


Asunto(s)
Amidohidrolasas/metabolismo , Glutamina/metabolismo , Nocicepción/fisiología , Ácidos Oléicos/metabolismo , Transducción de Señal/fisiología , Amidohidrolasas/genética , Animales , Temperatura Corporal/fisiología , Glutamina/genética , Glutamina/farmacología , Ratones , Ratones Noqueados , Nocicepción/efectos de los fármacos , Ácidos Oléicos/genética , Ácidos Oléicos/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
10.
J Med Chem ; 61(7): 3224-3230, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29533650

RESUMEN

N-Acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. We found that administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure, indicating that this pathway might be useful for treating obesity and associated disorders. We report the full account of the synthesis and mitochondrial uncoupling bioactivity of lipidated N-acyl amino acids and their unnatural analogues. Unsaturated fatty acid chains of medium length and neutral amino acid head groups are required for optimal uncoupling activity on mammalian cells. A class of unnatural N-acyl amino acid analogues, characterized by isoindoline-1-carboxylate head groups (37), were resistant to enzymatic degradation by PM20D1 and maintained uncoupling bioactivity in cells and in mice.


Asunto(s)
Aminoácidos/síntesis química , Aminoácidos/farmacología , Indoles/síntesis química , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Amidohidrolasas/metabolismo , Animales , Línea Celular , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Insaturados/síntesis química , Ácidos Grasos Insaturados/farmacología , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Ratones , Consumo de Oxígeno/efectos de los fármacos , Estimulación Química , Relación Estructura-Actividad
11.
PLoS One ; 11(2): e0149008, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26867016

RESUMEN

Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured ß-cells and islets. In this report we have determined effects of increasing intracellular MAG in the ß-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Benzodioxoles/química , Compuestos de Bifenilo/química , Calcio/química , Calcio/metabolismo , Carbamatos/química , Línea Celular , Ácidos Grasos/química , Ácidos Grasos no Esterificados/metabolismo , Glicerol/química , Glicerol/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Cinética , Lípidos/química , Lipólisis , Masculino , Fosfolípidos/química , Fosfolípidos/metabolismo , Piperidinas/química , Ratas , Ratas Sprague-Dawley , Succinimidas/química
12.
J Biol Chem ; 290(26): 16191-201, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25934392

RESUMEN

Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the ß-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r(2) = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca(2+) responses between left- and right-shifted ß-cells. However, a left shift in the sensitivity of exocytosis to Ca(2+) was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 µm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Exocitosis , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA