Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0308164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39137228

RESUMEN

Herein, we explore the generation and characterization of the radical cations of glycylphenylalanylglycine, or [GFG]•+, formed via dissociative electron-transfer reaction from the tripeptide to copper(II) within a ternary complex. A comprehensive investigation employing isotopic labeling, infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations elucidated the details and energetics in formation of the peptide radical cations as well as their dissociation products. Unlike conventional aromatic-containing peptide radical cations that primarily form canonical π-radicals, our findings reveal that 75% of the population of the experimentally produced [GFG]•+ precursors are [GFα•G]+, where the radical resides on the middle α-carbon of the phenylalanyl residue. This unexpected isomeric ion has an enthalpy of 6.8 kcal/mol above the global minimum, which has an N-terminal captodative structure, [Gα•FG]+, comprising 25% of the population. The [b2-H]•+ product ions are also present in a ratio of 75/25 from [GFα•G]+/ [Gα•FG]+, the results of which are obtained from matches between the IRMPD action spectrum and predicted IR absorption spectra of the [b2-H]•+ candidate structures, as well as from IRMPD isomer population analyses.


Asunto(s)
Cationes , Cationes/química , Radicales Libres/química , Cobre/química , Péptidos/química , Oligopéptidos/química , Termodinámica
2.
Nat Commun ; 15(1): 5928, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009611

RESUMEN

Sulfur is one of six life-essential elements, but its path from interstellar clouds to planets and their atmospheres is not well known. Astronomical observations in dense clouds have so far been able to trace only 1 percent of cosmic sulfur, in the form of gas phase molecules and volatile ices, with the missing sulfur expected to be locked in a currently unidentified form. The high sulfur abundances inferred in icy and rocky solar system bodies indicate that an efficient pathway must exist from volatile atomic sulfur in the diffuse interstellar medium to some form of refractory sulfur. One hypothesis is the formation of sulfur allotropes, particularly of the stable S8. However, experimental information about sulfur allotropes under astrochemically relevant conditions, needed to constrain their abundance, is lacking. Here, we report the laboratory far-infrared spectra of sulfur allotropes and examine their fragmentation pathways. The spectra, including that of cold, isolated S8 with three bands at 53.5, 41.3 and 21.1 µm, form a benchmark for computational modelling, which show a near-perfect match with the experiments. The experimental fragmentation pathways of sulfur allotropes, key information for astrochemical formation/destruction models, evidence a facile fragmentation of S8. These findings suggest the presence of sulfur allotropes distributions in interstellar space or in the atmosphere of planets, dependent on the environmental conditions.

3.
Chemphyschem ; 25(16): e202300915, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38758018

RESUMEN

Infrared (IR) emission bands by interstellar polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles (PANHs) are observed towards a large variety of interstellar objects and offer detailed insights into the chemistry and physics of the interstellar medium. The analysis of the emission bands, and thus the interpretation of the molecular characteristics of the carriers, heavily relies on the use of density functional theory (DFT) calculated IR spectra. However, there are significant challenges in accurately predicting the experimental IR band positions, particularly for PANH emission vibrational modes around 6 µm. In this work, we present gas-phase mid-infrared (mid-IR) spectra of cationic 3-azafluoranthene (3AF⋅+) and protonated 3-azafluoranthene (3AFH+) to investigate their experimental IR band positions in relation to DFT calculated bands. The experimental spectra are compared to DFT simulated spectra, where different approaches were followed to correct for anharmonicities. The best agreement is achieved by scaling frequencies of modes with large nitrogen displacements with a different factor. Even though our findings might be limited to a small number of PANH structures, they indicate, that nitrogen atom incorporation needs to be accounted for by carefully adjusting the corresponding scaling factors while computing IR spectra of PANHs on DFT level.

4.
Nat Commun ; 15(1): 2257, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480691

RESUMEN

Attaining complete anomeric control is still one of the biggest challenges in carbohydrate chemistry. Glycosyl cations such as oxocarbenium and dioxanium ions are key intermediates of glycosylation reactions. Characterizing these highly-reactive intermediates and understanding their glycosylation mechanisms are essential to the stereoselective synthesis of complex carbohydrates. Although C-2 acyl neighbouring-group participation has been well-studied, the reactive intermediates in more remote participation remain elusive and are challenging to study. Herein, we report a workflow that is utilized to characterize rhamnosyl 1,3-bridged dioxanium ions derived from C-3 p-anisoyl esterified donors. First, we use a combination of quantum-chemical calculations and infrared ion spectroscopy to determine the structure of the cationic glycosylation intermediate in the gas-phase. In addition, we establish the structure and exchange kinetics of highly-reactive, low-abundance species in the solution-phase using chemical exchange saturation transfer, exchange spectroscopy, correlation spectroscopy, heteronuclear single-quantum correlation, and heteronuclear multiple-bond correlation nuclear magnetic resonance spectroscopy. Finally, we apply C-3 acyl neighbouring-group participation to the synthesis of complex bacterial oligosaccharides. This combined approach of finding answers to fundamental physical-chemical questions and their application in organic synthesis provides a robust basis for elucidating highly-reactive intermediates in glycosylation reactions.

5.
Commun Chem ; 7(1): 30, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355930

RESUMEN

Modern untargeted mass spectrometry (MS) analyses quickly detect and resolve thousands of molecular compounds. Although features are readily annotated with a molecular formula in high-resolution small-molecule MS applications, the large majority of them remains unidentified in terms of their full molecular structure. Collision-induced dissociation tandem mass spectrometry (CID-MS2) provides a diagnostic molecular fingerprint to resolve the molecular structure through a library search. However, for de novo identifications, one must often rely on in silico generated MS2 spectra as reference. The ability of different in silico algorithms to correctly predict MS2 spectra and thus to retrieve correct molecular structures is a topic of lively debate, for instance in the CASMI contest. Underlying the predicted MS2 spectra are the in silico generated product ion structures, which are normally not used in de novo identification, but which can serve to critically assess the fragmentation algorithms. Here we evaluate in silico generated MSn product ion structures by comparison with structures established experimentally by infrared ion spectroscopy (IRIS). For a set of three dozen product ion structures from five precursor molecules, we find that virtually all fragment ion structure annotations in three major in silico MS2 libraries (HMDB, METLIN, mzCloud) are incorrect and caution the reader against their use for structure annotation of MS/MS ions.

6.
J Org Chem ; 89(3): 1618-1625, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38235652

RESUMEN

Minimal structural differences in the structure of glycosyl donors can have a tremendous impact on their reactivity and the stereochemical outcome of their glycosylation reactions. Here, we used a combination of systematic glycosylation reactions, the characterization of potential reactive intermediates, and in-depth computational studies to study the disparate behavior of glycosylation systems involving benzylidene glucosyl and mannosyl donors. While these systems have been studied extensively, no satisfactory explanations are available for the differences observed between the 3-O-benzyl/benzoyl mannose and glucose donor systems. The potential energy surfaces of the different reaction pathways available for these donors provide an explanation for the contrasting behavior of seemingly very similar systems. Evidence has been provided for the intermediacy of benzylidene mannosyl 1,3-dioxanium ions, while the formation of the analogous 1,3-glucosyl dioxanium ions is thwarted by a prohibitively strong flagpole interaction of the C-2-O-benzyl group with the C-5 proton in moving toward the transition state, in which the glucose ring adopts a B2,5-conformation. This study provides an explanation for the intermediacy of 1,3-dioxanium ions in the mannosyl system and an answer to why these do not form from analogous glucosyl donors.

7.
Chem Res Toxicol ; 37(1): 81-97, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38118149

RESUMEN

Toxicological assessments of newly developed agrochemical agents consider chemical modifications and their metabolic and biotransformation products. To carry out an in silico hazard assessment, understanding the type of chemical modification and its location on the original compound can greatly enhance the reliability of the evaluation. Here, we present and apply a method based on liquid chromatography-mass spectrometry (LC-MS) enhanced with infrared ion spectroscopy (IRIS) to better delineate the molecular structures of transformation products before in silico toxicology evaluation. IRIS facilitates the recording of IR spectra directly in the mass spectrometer for features selected by retention time and mass-to-charge ratio. By utilizing quantum-chemically predicted IR spectra for candidate molecular structures, one can either derive the actual structure or significantly reduce the number of (isomeric) candidate structures. This approach can assist in making informed decisions. We apply this method to a plant growth stimulant, digeraniol sinapoyl malate (DGSM), that is currently under development. Incubation of the compound in Caco-2 and HepaRG cell lines in multiwell plates and analysis by LC-MS reveals oxidation, glucuronidation, and sulfonation metabolic products, whose structures were elucidated by IRIS and used as input for an in silico toxicology assessment. The toxicity of isomeric metabolites predicted by in silico tools was also assessed, which revealed that assigning the right metabolite structure is an important step in the overall toxicity assessment of the agrochemical. We believe this identification approach can be advantageous when specific isomers are significantly more hazardous than others and can help better understand metabolic pathways.


Asunto(s)
Agroquímicos , Humanos , Reproducibilidad de los Resultados , Células CACO-2 , Espectrometría de Masas/métodos , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...