RESUMEN
A successful vaccine depends on its capacity to elicit a protective immune response against the target pathogen. The adjuvant used plays an important role in enhancing and directing the immune response. Liposomes are vaccine adjuvants that allow the co-encapsulation of antigens and immunostimulants. Our aim was to evaluate the adjuvanticity of a cationic liposome (Lip) formulated with a novel gemini lipopeptide (AG2-C16) alone or in combination with CpG-ODN as immunostimulants. To achieve this, we used the recombinant clumping factor of Staphylococcus aureus (rClfA) as a model antigen, in a murine model. We characterized the formulations by DLS, Cryo-SEM, and TEM, and analyzed the humoral and cellular immune responses induced in BALB/c and C57BL/6J mice injected with free rClfA and three formulations: Lip + CpG-ODN + rClfA, Lip + AG2-C16 + rClfA and Lip + AG2-C16 + CpG-ODN + rClfA. The addition of immunostimulants to the liposomes did not change the membrane diameter but affected their hydrodynamic diameter, z-potential, and homogeneity. All liposomal formulations were able to stimulate a specific humoral response, with high serum IgG, IgG1 and IgG2a or IgG2c titers in BALB/c or C57BL/6J mice, respectively. In addition, increased vaginal IgG levels were detected after injection, with no specific IgA. The cellular immunity induced by Lip + AG2-C16 + CpG-ODN + rClfA was characterized by a predominant Th1 profile, with the co-induction of Th2 and Th17 cells, and IFN-γ+ cytotoxic T cells. Furthermore, we studied the capacity of the different formulations to stimulate murine keratinocytes and fibroblasts in vitro. While no formulation activated keratinocytes, Lip + AG2-C16 + CpG-ODN increased the expression of CXCL9 in fibroblasts. These results suggest Lip + AG2-C16 + CpG-ODN as a promising adjuvant candidate to be used in vaccines against pathogens that require Th1/Th2/Th17 combined profiles, like S. aureus. Additionally, based on the IFN-γ+ cytotoxic T cells stimulation and the CXCL9 production by fibroblasts, we propose the use of this adjuvant formulation for the stimulation of a Th1 profile.
Asunto(s)
Liposomas , Vacunas , Femenino , Animales , Ratones , Staphylococcus aureus , Células Th17 , Ratones Endogámicos C57BL , Antígenos , Oligodesoxirribonucleótidos , Adyuvantes Inmunológicos/farmacología , Inmunidad Celular , Inmunoglobulina G , Ratones Endogámicos BALB CRESUMEN
Three abiotic stresses, copper application (CS), mechanical rubbing (MS) and water deprivation (WS) applied on miniature rose bushes specifically activate the expression of the CuZn-Superoxide dismutase (SOD). The Cu/Zn-SOD protein immunodetected in the 4th internode was shown engaged in lignification in phloem, cambium and xylem cells. The SOD occurrence was detailed in the vessel associated cells (VACs), using immunogold labeling observed in transmission electron microscopy. The enzyme was detected in mitochondria, plastids, Golgi vesicles, endoplasmic reticulum and plasma membrane. In addition, in pit-fields without plasmodesmata linking vessel associated cells to vessels, the abiotic stresses increased the transfer apparatus volume. The content in unmethylatedpectins increased in wall ingrowths after CS and MS, but not in WS. In addition to the different localization, the SOD was differentially overexpressed according to the applied stress: an isoform detected at 17 kDa under CuSO4 application, two isoforms respectively detected at 20 and 17 kDa under MS and detected at 17 and 15 kDa under WS. Notably, the only 17 kDa isoform was detected in plasma membrane vesicles from plants submitted to the three stresses. Thus, by increasing the transfer apparatus development, the key role of VACs was emphasized in establishing an adaptative response to abiotic stresses, in miniature rose bushes. Additionally, it has been observed that the differential SOD localization under such stresses sustained the regulatory function of VACs in the transitory sink function of xylem.
Asunto(s)
Cobre , Mitocondrias , Estrés Fisiológico , Membrana Celular , Microscopía Electrónica de Transmisión , Superóxido Dismutasa-1 , Rosa/genética , Rosa/metabolismo , Estrés Fisiológico/genéticaRESUMEN
Intrastriatal embryonic ventral mesencephalon grafts have been shown to integrate, survive, and reinnervate the host striatum in clinical settings and in animal models of Parkinson's disease. However, this ectopic location does not restore the physiological loops of the nigrostriatal pathway and promotes only moderate behavioral benefits. Here, we performed a direct comparison of the potential benefits of intranigral versus intrastriatal grafts in animal models of Parkinson's disease. We report that intranigral grafts promoted better survival of dopaminergic neurons and that only intranigral grafts induced recovery of fine motor skills and normalized cortico-striatal responses. The increase in the number of toxic activated glial cells in host tissue surrounding the intrastriatal graft, as well as within the graft, may be one of the causes of the increased cell death observed in the intrastriatal graft. Homotopic localization of the graft and the subsequent physiological cell rewiring of the basal ganglia may be a key factor in successful and beneficial cell transplantation procedures.
Asunto(s)
Trasplante de Tejido Encefálico , Enfermedad de Parkinson , Animales , Trasplante de Tejido Encefálico/métodos , Trasplante de Células , Trasplante de Tejido Fetal/métodos , Mesencéfalo , Oxidopamina , Enfermedad de Parkinson/terapia , Sustancia NegraRESUMEN
Visual deficit is one of the complications of Huntington disease (HD), a fatal neurological disorder caused by CAG trinucleotide expansions in the Huntingtin gene, leading to the production of mutant Huntingtin (mHTT) protein. Transgenic HD R6/1 mice expressing human HTT exon1 with 115 CAG repeats recapitulate major features of the human pathology and exhibit a degeneration of the retina. Our aim was to gain insight into the ultrastructure of the pathological HD R6/1 retina by electron microscopy (EM). We show that the HD R6/1 retina is enriched with unusual organelles myelinosomes, produced by retinal neurons and glia. Myelinosomes are present in all nuclear and plexiform layers, in the synaptic terminals of photoreceptors, in the processes of retinal neurons and glial cells, and in the subretinal space. In vitro study shows that myelinosomes secreted by human retinal glial Müller MIO-M1 cells transfected with EGFP-mHTT-exon1 carry EGFP-mHTT-exon1 protein, as revealed by immuno-EM and Western-blotting. Myelinosomes loaded with mHTT-exon1 are incorporated by naive neuronal/neuroblastoma SH-SY5Y cells. This results in the emergence of mHTT-exon1 in recipient cells. This process is blocked by membrane fusion inhibitor MDL 28170. Conclusion: Incorporation of myelinosomes carrying mHTT-exon1 in recipient cells may contribute to HD spreading in the retina. Exploring ocular fluids for myelinosome presence could bring an additional biomarker for HD diagnostics.
Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Vaina de Mielina/patología , Neuroglía/patología , Neuronas/patología , Orgánulos/patología , Retina/patología , Animales , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Orgánulos/metabolismo , Retina/metabolismoRESUMEN
Maintenance of cell proteostasis relies on two degradation pathways: proteasome and autophagy. Here we describe a new proteostasis pathway avoiding degradation of abnormal proteins yet carrying them outside the cell using nanovesicles called myelinosomes. These myelinosomes are produced in pathological or stress situations in relation with genetic or environmental factors. Myelinosome vesicles are nano-sized multi-stacked membrane structures, resembling myelin sheath. It has recently been shown in two models of genetic diseases (Huntington's disease and cystic fibrosis) that myelinosomes are important for eliminating mutant proteins in an unusual secretory process, thus preventing their accumulation and aggregation in cells.
Title: Les myélinosomes : une nouvelle voie du contrôle de qualité des protéines. Abstract: Deux voies de dégradation des protéines mal repliées sont classiquement décrites : la voie du protéasome et la voie de l'autophagie. Nous décrivons ici une nouvelle voie de protéostase cellulaire ne dégradant pas la protéine anormale mais l'expulsant hors de la cellule grâce à des nanovésicules appelées myélinosomes. Ces myélinosomes sont produits par la cellule dans des situations pathologiques ou de stress en lien avec des facteurs génétiques ou environnementaux. Sur le plan morphologique, les myélinosomes sont caractérisés par des membranes osmiophiles denses aux électrons dont l'arrangement empilé est semblable à celui de la myéline et présente jusqu'à 30 feuillets selon le type de cellule. Dans deux modèles, au moins, de maladies génétiques (la maladie de Huntington et la mucoviscidose), les myélinosomes sont importants pour éliminer les protéines mutées par un processus sécrétoire inhabituel, évitant ainsi leur agrégation dans les cellules.
Asunto(s)
Vesículas Extracelulares/fisiología , Vaina de Mielina/metabolismo , Biosíntesis de Proteínas/fisiología , Vías Secretoras/fisiología , Animales , Vesículas Extracelulares/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/etiología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Proteínas/metabolismo , Control de CalidadRESUMEN
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
RESUMEN
[This corrects the article DOI: 10.1155/2019/5637075.].
RESUMEN
Under the effect of disturbances, like unbalanced stem, but also during normal development, poplar trees can develop a specific secondary xylem, called "tension wood" (TW), which is easily identifiable by the presence of a gelatinous layer in the secondary cell walls (SCW) of the xylem fibers. Since TW formation was mainly performed on 2-year-old poplar models, an in vitro poplar that produces gelatinous fibers (G-fibers) while offering the same experimental advantages as herbaceous plants has been developed. Using specific cell wall staining techniques, wood structural features and lignin/cellulose distribution were both detailed in cross-sections obtained from the curved stem part of in vitro poplars. A supposed delay in the SCW lignification process in the G-fibers, along with the presence of a G-layer, could be observed in the juvenile plants. Moreover, in this G-layer, the immunolabeling of various polymers carried out in the SCW of TW has allowed detecting crystalline cellulose, arabinogalactans proteins, and rhamnogalacturonans I; however, homogalacturonans, xylans, and xyloglucans could not be found. Interestingly, extensins were detected in this typical adaptative or stress-induced structure. These observations were corroborated by a quantitation of the immunorecognized polymer distribution using gold particle labeling. In conclusion, the in vitro poplar model seems highly convenient for TW studies focusing on the implementation of wall polymers that provide the cell wall with greater plasticity in adapting to the environment.
Asunto(s)
Biopolímeros/metabolismo , Pared Celular/metabolismo , Populus/anatomía & histología , Populus/crecimiento & desarrollo , Madera/anatomía & histología , Madera/fisiología , Pared Celular/ultraestructura , Celulosa/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Glicoproteínas/metabolismo , Lignina/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Populus/ultraestructuraRESUMEN
Age-related macular degeneration (AMD) is characterized by retinal pigment epithelial (RPE) cell dysfunction beginning at early stages of the disease. The lack of an appropriate in vitro model is a major limitation in understanding the mechanisms leading to the occurrence of AMD. This study compared human-induced pluripotent stem cell- (hiPSC-) RPE cells derived from atrophic AMD patients (77 y/o ± 7) to hiPSC-RPE cells derived from healthy elderly individuals with no drusen or pigmentary alteration (62.5 y/o ± 17.5). Control and AMD hiPSC-RPE cell lines were characterized by immunofluorescence, flow cytometry, and electronic microscopy. The toxicity level of iron after Fe-NTA treatment was evaluated by an MTT test and by the detection of dichloro-dihydro-fluorescein diacetate. Twelve hiPSC-RPE cell lines (6 AMD and 6 controls) were used for the experiment. Under basal conditions, all hiPSC-RPE cells expressed a phenotypic profile of senescent cells with rounded mitochondria at passage 2. However, the treatment with Fe-NTA induced higher reactive oxygen species production and cell death in hiPSC-RPE AMD cells than in hiPSC-RPE Control cells. Interestingly, functional analysis showed differences in lysosomal activity between the two populations. Indeed, Cathepsin B activity was higher in hiPSC-RPE AMD cells compared to hiPSC-RPE Control cells in basal condition and link to a pH more acidic in this cell population. Moreover, oxidative stress exposure leads to an increase of Cathepsin D immature form levels in both populations, but in a higher proportion in hiPSC-RPE AMD cells. These findings could demonstrate that hiPSC-RPE AMD cells have a typical disease phenotype compared to hiPSC-RPE Control cells.
Asunto(s)
Catepsina B/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Lisosomas/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Atrofia , Muerte Celular , Células Cultivadas , Senescencia Celular , Compuestos Férricos , Humanos , Concentración de Iones de Hidrógeno , Ácido Nitrilotriacético/análogos & derivados , Estrés Oxidativo , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/patologíaRESUMEN
Small well-defined spherical gold nanoparticles were synthesized by a simple non-physical method based on a mixture of gold salt, tetraethylene oxide and water, free of any additional reducing chemical agent or physical method. The ratio of tetraethylene oxide to water was optimized to achieve a fast synthesis within 30 min. Transmission electron microscopy images showed well dispersed gold nanospheres with a size ranging from 10 to 15 nm. XPS was used to confirm the oxidation state of gold nanoparticles and the oxidation products from tetraethylene oxide after the reaction. This new protocol performed in sustainable and biocompatible conditions is complementary to the current methods used to synthesize gold nanospheres. In order to use these particles in biological samples, we correlated the atomic absorption with the colorimetric concentration of nanospheres in solution. After 24 h of incubation of cancer or neuronal cell lines with these nanoparticles, transmission electron microscopy images showed similar cellular uptake in both cell lines, especially in cytoplasmic vesicular structures.
Asunto(s)
Oro , Nanopartículas del Metal , Compuestos de Oro , Óxidos , AguaRESUMEN
In M. sativa cv. Gabès plants treated with 150mM NaCl, the height of the stem is decreased and the internode number, length and diameter are reduced. This depressive effect on growth, but also on photosynthetic activity and water balance, is accompanied by structural changes. In the upper internodes, NaCl treatment increases cambium development, so that the vascular ring is initiated earlier than in controls. In the lower internodes, the number of lignified phloem fibers is increased by NaCl, and their wall thickness is augmented, compared to controls; in the phloem complex, the nacreous layer is enlarged, the number of internal wall ingrowths is increased, but companion cells are damaged. In the treated lower internodes, few vessels occur in the secondary xylem, which is by contrast rich in lignified fibers and in wide vessels grouped in the metaxylem area; protoxylem parenchyma and adjacent pith are also lignified. In addition, in treated lower internodes, starch grains are less abundant than in controls, and this variation might be related to the decrease of photosynthesis. When taken together, qualitative and quantitative results indicate that the saline stress has a marked morpho-anatomical impact on the M. sativa Gabès stem. In particular, variations of secondary derivative distribution, increased wall thickening, lignification of phloem and xylem fibers and damage in the phloem complex are NaCl-induced responses, and are more expressed in the lower than in the upper internodes. The reinforcement of the stem lignified vasculature is thus a positive response to stress, but it has a negative impact on the quality of the forage.
RESUMEN
Vacuoles have been shown to undergo deep modifications in relation to plant developmental stages and in the maintaining the cellular homeostasis. In this context, we studied the variations of the vacuolar membrane size and α-TIP aquaporin distribution at early and advanced seed stages of maturation, germination and embryo growth in Vicia faba cotyledon storage cells.
Asunto(s)
Acuaporinas/metabolismo , Cotiledón/citología , Cotiledón/metabolismo , Fabaceae/metabolismo , Germinación , Membranas Intracelulares/metabolismo , Semillas/metabolismo , Vacuolas/metabolismo , Cotiledón/ultraestructura , Fabaceae/citología , Fabaceae/embriología , Fabaceae/ultraestructura , Membranas Intracelulares/ultraestructura , Semillas/ultraestructura , Almidón/metabolismo , Vacuolas/ultraestructuraRESUMEN
Inappropriate deposition of insoluble aggregates of proteins with abnormal structures is a hallmark of affected organs in protein aggregation disease. Very rare, affected organs avoid aggregation naturally. This concerns atrophic testis in Huntington disease (HD). We aimed to understand how HD testis avoids aggregation. Using HD model R6/1 mice, we demonstrate that affected testis contain rare organelles myelinosomes. Myelinosomes secreted from testis somatic TM4 Sertoli cells provide the release of aggregate-prone mutant, but not normal Huntingtin (Htt) exon1. Myelinosomes also support the release of other aggregate-prone mutant protein responsible for cystic fibrosis (CF), F508delCFTR. The traffic and discharge of myelinosomes is facilitated by multivesicular bodies (MVB)s. Inhibition of MVB excretion induced reversible retention of both misfolded proteins inside TM4 Sertoli cells. We propose that myelinosome-mediated elimination of mutant proteins is an unusual secretory process allowing Sertoli cells getting rid of misfolded proteins to avoid aggregation and to maintain cell proteostasis.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Agregación Patológica de Proteínas/genética , Animales , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos CFTR , Proteínas Mutantes/genética , Neuronas/metabolismo , Neuronas/patología , Orgánulos/genética , Orgánulos/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/patologíaRESUMEN
Vacuoles of different types frequently coexist in the same plant cell, but the duality of the tannin/tannin-less vacuoles observed in Mimosa pudica L. is rare. In this plant, which is characterized by highly motile leaves, the development and original features of the double vacuolar compartment were detailed in primary pulvini from the young to the mature leaf stage. In young pulvini, the differentiation of tannin vacuoles first occurred in the epidermis and progressively spread toward the inner cortex. In motor cells of nonmotile pulvini, tannin deposits first lined the membranes of small vacuole profiles and then formed opaque clusters that joined together to form a large tannin vacuole (TV), the proportion of which in the cell was approximately 45%. At this stage, transparent vacuole profiles were rare and small, but as the parenchyma cells enlarged, these profiles coalesced to form a transparent vacuole with a convexity toward the larger-sized tannin vacuole. When leaf motility began to occur, the two vacuole types reached the same relative proportion (approximately 30%). Finally, in mature cells displaying maximum motility, the large transparent colloidal vacuole (CV) showed a relative proportion increasing to approximately 50%. At this stage, the proportion of the tannin vacuole, occurring in the vicinity of the nucleus, decreased to approximately 10%. The presence of the condensed type of tannins (proanthocyanidins) was proven by detecting their fluorescence under UV light and by specific chemical staining. This dual vacuolar profile was also observed in nonmotile parts of M. pudica (e.g., the petiole and the stem). Additional observations of leaflet pulvini showing more or less rapid movements showed that this double vacuolar structure was present in certain plants (Mimosa spegazzinii and Desmodium gyrans), but absent in others (Albizzia julibrissin, Biophytum sensitivum, and Cassia fasciculata). Taken together, these observations strongly suggest that a direct correlation cannot be found between the presence of a tannin vacuole and the osmoregulated motility of pulvini.
Asunto(s)
Fabaceae/citología , Células Vegetales/metabolismo , Hojas de la Planta/citología , Taninos/metabolismo , Vacuolas/metabolismo , Fabaceae/metabolismo , Fluorescencia , Microscopía Electrónica de Transmisión , Mimosa/citología , Mimosa/metabolismo , Hojas de la Planta/metabolismo , Proantocianidinas/metabolismoRESUMEN
We studied the distribution of wall ingrowth (WI) polymers by probing thin sections of companion cells specialized as transfer cells in minor veins of Medicago sativa cv Gabès blade with affinity probes and antibodies specific to polysaccharides and glycoproteins. The wall polymers in the controls were similar in WIs and in the primary wall but differently distributed. The extent of labeling in these papillate WIs differed for JIM5 and JIM7 homogalacturonans but was in the same range for LM5 and LM6 rhamnogalacturonans and xyloglucans. These data show that WI enhancement probably requires arabinogalactan proteins (JIM8) mainly localized on the outer part of the primary wall and WIs. By comparison, NaCl-treated plants exhibited cell wall polysaccharide modifications indicating (1) an increase in unesterified homogalacturonans (JIM5), probably implicated in Na(+) binding and/or polysaccharide network interaction for limiting turgor variations in mesophyll cells; (2) enhancement of the xyloglucan network with an accumulation of fucosylated xyloglucans (CCRC-M1) known to increase the capacity of cellulose binding; and (3) specific recognition of JIM8 arabinogalactan proteins that could participate in both wall enlargement and cohesion by increasing the number of molecular interactions with the other polymers. In conclusion, the cell wall polysaccharide distribution in enlarged WIs might (1) participate in wall resistance to sequestration of Na(+), allowing a better control of hydric homeostasis in mesophyll cells to maintain metabolic activity in source leaves, and (2) maintain tolerance of M. sativa to NaCl.