Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942994

RESUMEN

Fluorescence and light microscopy are important tools in the history of natural science. However, the resolution of microscopes is limited by the diffraction of light. One possible method to circumvent this physical restriction is the recently developed expansion microscopy (ExM). However, the original ultrastructure ExM (U-ExM) protocol is very time-consuming, and some epitopes are lost during the process. In this study, we developed a shortened pre-gelation staining ExM (PS-ExM) protocol and tested it to investigate the Plasmodium liver stage. The protocol presented in this study allows expanding of pre-stained samples, which results in shorter incubation times, better preservation of some epitopes and the advantage that non-expanded controls can be performed alongside using the same staining protocol. The protocol applicability was accessed throughout the Plasmodium liver stage, showing isotropic five-fold expansion. Furthermore, we used PS-ExM to visualise parasite mitochondria as well as the association of lysosomes to the parasitophorous vacuole membrane (PVM) as an example of visualising host-pathogen interaction. We are convinced that this new tool will be helpful for a deeper understanding of the biology of the Plasmodium liver stage.


Asunto(s)
Parásitos , Plasmodium , Animales , Microscopía , Hígado , Epítopos
2.
Proc Natl Acad Sci U S A ; 119(40): e2204294119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161893

RESUMEN

The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Genoma Mitocondrial , Membranas Mitocondriales , Proteínas Protozoarias , Trypanosoma brucei brucei , Cuerpos Basales/química , ADN Mitocondrial/genética , Epítopos/química , Flagelos/química , Membranas Mitocondriales/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA