Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728329

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE: We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS: A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS: The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION: This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.


Asunto(s)
Estimulación Encefálica Profunda , Lenguaje , Enfermedad de Parkinson , Habla , Voz , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Habla/fisiología , Voz/fisiología , Temblor Esencial/terapia , Temblor Esencial/fisiopatología
3.
Hum Brain Mapp ; 45(3): e26627, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38376166

RESUMEN

The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.


Asunto(s)
Corteza Auditiva , Acúfeno , Animales , Humanos , Acúfeno/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Giro Parahipocampal/diagnóstico por imagen , Sistema Límbico
4.
J Neurosci Res ; 102(2): e25298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361410

RESUMEN

Evidence suggests that speech and limb movement inhibition are subserved by common neural mechanisms, particularly within the right prefrontal cortex. In a recent study, we found that cathodal stimulation of right dorsolateral prefrontal cortex (rDLPFC) differentially modulated P3 event-related potentials for speech versus limb inhibition. In the present study, we further analyzed these data to examine the effects of cathodal high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC on frontal theta - an oscillatory marker of cognitive control - in response to speech and limb inhibition, during a Go/No-Go task in 21 neurotypical adults. Electroencephalography data demonstrated that both speech and limb No-Go elicited prominent theta activity over right prefrontal electrodes, with stronger activity for speech compared to limb. Moreover, we found that cathodal stimulation significantly increased theta power over right prefrontal electrodes for speech versus limb No-Go. Source analysis revealed that cathodal, but not sham, stimulation increased theta activity within rDLPFC and bilateral premotor cortex for speech No-Go compared to limb movement inhibition. These findings complement our previous report and suggest (1) right prefrontal theta activity is an amodal oscillatory mechanism supporting speech and limb inhibition, (2) larger theta activity in prefrontal electrodes for speech versus limb following cathodal stimulation may reflect allocation of additional neural resources for a more complex motor task, such as speech compared to limb movement. These findings have translational implications for conditions such as Parkinson's disease, wherein both speech and limb movement are impaired.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Corteza Prefontal Dorsolateral , Habla/fisiología , Electroencefalografía , Corteza Prefrontal/fisiología
5.
J Clin Psychol ; 80(1): 186-197, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850971

RESUMEN

BACKGROUND: Misophonia is often referred to as a disorder that is characterized by excessive negative emotional responses, including anger and anxiety, to "trigger sounds" which are typically day-to-day sounds, such as those generated from people eating, chewing, and breathing. Misophonia (literally "hatred of sounds") has commonly been understood within an auditory processing framework where sounds cause distress due to aberrant processing in the auditory and emotional systems of the brain. However, a recent proposal suggests that it is the perceived action (e.g., mouth movement in eating/chewing sounds as triggers) of the trigger person, and not the sounds per se, that drives the distress in misophonia. Since observation or listening to sounds of actions of others are known to prompt mimicry in perceivers, we hypothesized that mimicking the action of the trigger person may be prevalent in misophonia. Apart from a few case studies and anecdotal information, a relation between mimicking and misophonia has not been systematically evaluated. METHOD: In this work, we addressed this limitation by collecting data on misophonia symptoms and mimicry behavior using online questionnaires from 676 participants. RESULTS: Analysis of these data shows that (i) more than 45% of individuals with misophonia reported mimicry, indicating its wide prevalence, (ii) the tendency to mimic varies in direct proportion to misophonia severity, (iii) compared to other human and environmental sounds, trigger sounds of eating and chewing are more likely to trigger mimicking, and (iv) the act of mimicking provides some degree of relief from distress to people with misophonia. CONCLUSION: This study shows prevalence of mimicry and its relation to misophonia severity and trigger types. The theoretical framework of misophonia needs to incorporate the phenomenon of mimicry and its effect on management of misophonia distress.


Asunto(s)
Emociones , Trastornos de la Audición , Humanos , Prevalencia , Encuestas y Cuestionarios
7.
J Assoc Res Otolaryngol ; 24(6): 607-617, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38062284

RESUMEN

OBJECTIVES: Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory grouping ability also contributes to speech-in-noise understanding in CI users. DESIGN: Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict sentence-in-noise performance from the other tasks. RESULTS: No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users' speech-in-noise performance that was not explained by spectral and temporal resolution. CONCLUSION: Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI success and suggest potential strategies for rehabilitation based on training with non-speech stimuli.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Habla , Ruido
8.
Nat Commun ; 14(1): 6264, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805497

RESUMEN

The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.


Asunto(s)
Diásquisis , Semántica , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Lóbulo Temporal/cirugía , Lóbulo Temporal/fisiología
9.
Cereb Cortex ; 33(14): 9105-9116, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37246155

RESUMEN

The perception of pitch is a fundamental percept, which is mediated by the auditory system, requiring the abstraction of stimulus properties related to the spectro-temporal structure of sound. Despite its importance, there is still debate as to the precise areas responsible for its encoding, which may be due to species differences or differences in the recording measures and choices of stimuli used in previous studies. Moreover, it was unknown whether the human brain contains pitch neurons and how distributed such neurons might be. Here, we present the first study to measure multiunit neural activity in response to pitch stimuli in the auditory cortex of intracranially implanted humans. The stimulus sets were regular-interval noise with a pitch strength that is related to the temporal regularity and a pitch value determined by the repetition rate and harmonic complexes. Specifically, we demonstrate reliable responses to these different pitch-inducing paradigms that are distributed throughout Heschl's gyrus, rather than being localized to a particular region, and this finding was evident regardless of the stimulus presented. These data provide a bridge across animal and human studies and aid our understanding of the processing of a critical percept associated with acoustic stimuli.


Asunto(s)
Corteza Auditiva , Animales , Humanos , Corteza Auditiva/fisiología , Percepción de la Altura Tonal/fisiología , Estimulación Acústica , Mapeo Encefálico , Potenciales Evocados Auditivos/fisiología , Percepción Auditiva
10.
Ear Hear ; 44(5): 1107-1120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144890

RESUMEN

OBJECTIVES: Understanding speech-in-noise (SiN) is a complex task that recruits multiple cortical subsystems. Individuals vary in their ability to understand SiN. This cannot be explained by simple peripheral hearing profiles, but recent work by our group ( Kim et al. 2021 , Neuroimage ) highlighted central neural factors underlying the variance in SiN ability in normal hearing (NH) subjects. The present study examined neural predictors of SiN ability in a large cohort of cochlear-implant (CI) users. DESIGN: We recorded electroencephalography in 114 postlingually deafened CI users while they completed the California consonant test: a word-in-noise task. In many subjects, data were also collected on two other commonly used clinical measures of speech perception: a word-in-quiet task (consonant-nucleus-consonant) word and a sentence-in-noise task (AzBio sentences). Neural activity was assessed at a vertex electrode (Cz), which could help maximize eventual generalizability to clinical situations. The N1-P2 complex of event-related potentials (ERPs) at this location were included in multiple linear regression analyses, along with several other demographic and hearing factors as predictors of SiN performance. RESULTS: In general, there was a good agreement between the scores on the three speech perception tasks. ERP amplitudes did not predict AzBio performance, which was predicted by the duration of device use, low-frequency hearing thresholds, and age. However, ERP amplitudes were strong predictors for performance for both word recognition tasks: the California consonant test (which was conducted simultaneously with electroencephalography recording) and the consonant-nucleus-consonant (conducted offline). These correlations held even after accounting for known predictors of performance including residual low-frequency hearing thresholds. In CI-users, better performance was predicted by an increased cortical response to the target word, in contrast to previous reports in normal-hearing subjects in whom speech perception ability was accounted for by the ability to suppress noise. CONCLUSIONS: These data indicate a neurophysiological correlate of SiN performance, thereby revealing a richer profile of an individual's hearing performance than shown by psychoacoustic measures alone. These results also highlight important differences between sentence and word recognition measures of performance and suggest that individual differences in these measures may be underwritten by different mechanisms. Finally, the contrast with prior reports of NH listeners in the same task suggests CI-users performance may be explained by a different weighting of neural processes than NH listeners.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Humanos , Habla , Individualidad , Ruido , Percepción del Habla/fisiología
11.
Front Hum Neurosci ; 17: 962909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875233

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN), which consistently improves limb motor functions, shows mixed effects on speech functions in Parkinson's disease (PD). One possible explanation for this discrepancy is that STN neurons may differentially encode speech and limb movement. However, this hypothesis has not yet been tested. We examined how STN is modulated by limb movement and speech by recording 69 single- and multi-unit neuronal clusters in 12 intraoperative PD patients. Our findings indicated: (1) diverse patterns of modulation in neuronal firing rates in STN for speech and limb movement; (2) a higher number of STN neurons were modulated by speech vs. limb movement; (3) an overall increase in neuronal firing rates for speech vs. limb movement; and (4) participants with longer disease duration had higher firing rates. These data provide new insights into the role of STN neurons in speech and limb movement.

12.
Psychophysiology ; 60(8): e14289, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883294

RESUMEN

Evidence suggests that planning and execution of speech and limb movement are subserved by common neural substrates. However, less is known about whether they are supported by a common inhibitory mechanism. P3 event-related potentials (ERPs) is a neural signature of motor inhibition, which are found to be generated by several brain regions including the right dorsolateral prefrontal cortex (rDLPFC). However, the relative contribution of rDLPFC to the P3 response associated with speech versus limb inhibition remains elusive. We investigated the contribution of rDLPFC to the P3 underlying speech versus limb movement inhibition. Twenty-one neurotypical adults received both cathodal and sham high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC. ERPs were subsequently recorded while subjects were performing speech and limb Go/No-Go tasks. Cathodal HD-tDCS decreased accuracy for speech versus limb No-Go. Both speech and limb No-Go elicited a similar topographical distribution of P3, with significantly larger amplitudes for speech versus limb at a frontocentral location following cathodal HD-tDCS. Moreover, results showed stronger activation in cingulate cortex and rDLPFC for speech versus limb No-Go following cathodal HD-tDCS. These results indicate (1) P3 is an ERP marker of amodal inhibitory mechanisms that support both speech and limb inhibition, (2) larger P3 for speech versus limb No-Go following cathodal HD-tDCS may reflect the recruitment of additional neural resources-particularly within rDLPFC and cingulate cortex-as compensatory mechanisms to counteract the temporary stimulation-induced decline in speech inhibitory process. These findings have translational implications for neurological conditions that concurrently affect speech and limb movement.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefontal Dorsolateral , Habla , Potenciales Evocados , Encéfalo , Corteza Prefrontal/fisiología
13.
World Neurosurg ; 173: e168-e179, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36773808

RESUMEN

BACKGROUND: It is essential that treatment effects reported from retrospective observational studies are as reliable as possible. In a retrospective analysis of spine surgery patients, we obtained a spurious result: tranexamic acid (TXA) had no effect on intraoperative blood loss. This statistical tutorial explains how this result occurred and why statistical analyses of observational studies must consider the effects of individual surgeons. METHODS: We used an observational database of 580 elective adult spine surgery patients, supplemented with a review of perioperative medication records. We tested whether common statistical methods (multivariable regression or propensity score-based methods) could adjust for surgeons' selection bias in TXA administration. RESULTS: Because TXA administration (frequency, timing, and dose) and surgeon were linked (collinear), estimating and testing the independent effect of TXA on outcome using multivariable regression without including surgeon as a variable would provide biased (spurious) results. Likewise, because of surgeon/TXA linkage, assumptions of propensity score-based analysis were violated, statistical methods to improve comparability between groups failed, and spurious blood loss results were worsened. Others numerous differences among surgeons existed in intraoperative and postoperative practices and outcomes. CONCLUSIONS: In observational studies in which individual surgeons determine whether their patients receive the treatment of interest, consideration must be given to inclusion of surgeon as an independent variable in all analyses. Failure to include the surgeon in an analysis of observational data carries a substantial risk of obtaining spurious results, either creating a spurious treatment effect or failing to detect a true treatment effect.


Asunto(s)
Antifibrinolíticos , Cirujanos , Ácido Tranexámico , Adulto , Humanos , Antifibrinolíticos/uso terapéutico , Estudios Retrospectivos , Sesgo de Selección , Ácido Tranexámico/uso terapéutico , Pérdida de Sangre Quirúrgica
14.
Hear Res ; 428: 108667, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566642

RESUMEN

The startle reflex (SR), a robust, motor response elicited by an intense auditory, visual, or somatosensory stimulus has been widely used as a tool to assess psychophysiology in humans and animals for almost a century in diverse fields such as schizophrenia, bipolar disorder, hearing loss, and tinnitus. Previously, SR waveforms have been ignored, or assessed with basic statistical techniques and/or simple template matching paradigms. This has led to considerable variability in SR studies from different laboratories, and species. In an effort to standardize SR assessment methods, we developed a machine learning algorithm and workflow to automatically classify SR waveforms in virtually any animal model including mice, rats, guinea pigs, and gerbils obtained with various paradigms and modalities from several laboratories. The universal features common to SR waveforms of various species and paradigms are examined and discussed in the context of each animal model. The procedure describes common results using the SR across species and how to fully implement the open-source R implementation. Since SR is widely used to investigate toxicological or pharmaceutical efficacy, a detailed and universal SR waveform classification protocol should be developed to aid in standardizing SR assessment procedures across different laboratories and species. This machine learning-based method will improve data reliability and translatability between labs that use the startle reflex paradigm.


Asunto(s)
Reflejo de Sobresalto , Acúfeno , Humanos , Ratas , Ratones , Animales , Cobayas , Reflejo de Sobresalto/fisiología , Estimulación Acústica/métodos , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Gerbillinae
15.
Front Hum Neurosci ; 17: 1334742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38318272

RESUMEN

Introduction: Cochlear implants (CIs) are the treatment of choice for severe to profound hearing loss. Variability in CI outcomes remains despite advances in technology and is attributed in part to differences in cortical processing. Studying these differences in CI users is technically challenging. Spectrally degraded stimuli presented to normal-hearing individuals approximate input to the central auditory system in CI users. This study used intracranial electroencephalography (iEEG) to investigate cortical processing of spectrally degraded speech. Methods: Participants were adult neurosurgical epilepsy patients. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands) or presented without vocoding. The stimuli were presented in a two-alternative forced choice task. Cortical activity was recorded using depth and subdural iEEG electrodes. Electrode coverage included auditory core in posteromedial Heschl's gyrus (HGPM), superior temporal gyrus (STG), ventral and dorsal auditory-related areas, and prefrontal and sensorimotor cortex. Analysis focused on high gamma (70-150 Hz) power augmentation and alpha (8-14 Hz) suppression. Results: Chance task performance occurred with 1-2 spectral bands and was near-ceiling for clear stimuli. Performance was variable with 3-4 bands, permitting identification of good and poor performers. There was no relationship between task performance and participants demographic, audiometric, neuropsychological, or clinical profiles. Several response patterns were identified based on magnitude and differences between stimulus conditions. HGPM responded strongly to all stimuli. A preference for clear speech emerged within non-core auditory cortex. Good performers typically had strong responses to all stimuli along the dorsal stream, including posterior STG, supramarginal, and precentral gyrus; a minority of sites in STG and supramarginal gyrus had a preference for vocoded stimuli. In poor performers, responses were typically restricted to clear speech. Alpha suppression was more pronounced in good performers. In contrast, poor performers exhibited a greater involvement of posterior middle temporal gyrus when listening to clear speech. Discussion: Responses to noise-vocoded speech provide insights into potential factors underlying CI outcome variability. The results emphasize differences in the balance of neural processing along the dorsal and ventral stream between good and poor performers, identify specific cortical regions that may have diagnostic and prognostic utility, and suggest potential targets for neuromodulation-based CI rehabilitation strategies.

16.
Neuroimage ; 263: 119642, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150607

RESUMEN

Bush et al. (2022) highlight that brain recordings examining speech production can be significantly affected by microphonic artifact, which would change the interpretation of these kinds of data. While these findings are vital in determining whether data are artifactual or physiological in origin, frequencies were only examined up to 250 Hz (i.e., local field potentials), which would imply that spike-related data (single or multi-neuron recordings) are unaffected. We highlight here that this type of contamination may also be present in unit recordings, with the same aim to understand genuine neural mechanisms rather than mis-interpreting artifactual data.


Asunto(s)
Artefactos , Habla , Humanos , Neuronas/fisiología , Encéfalo , Cabeza
17.
Clin Neurol Neurosurg ; 219: 107318, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750022

RESUMEN

OBJECTIVE: To identify perioperative risk factors for postoperative delirium (POD) in patients aged 65 or older undergoing lumbar spinal fusion procedures. PATIENTS AND METHODS: A retrospective cohort analysis was performed on patients undergoing lumbar spinal fusion over an approximately three-year period at a single institution. Demographic and perioperative data were obtained from electronic medical records. The primary outcome was the presence of postoperative delirium assayed by the Delirium Observation Screening Scale (DOSS) and Confusion Assessment Method for the ICU (CAM-ICU). Univariate and multivariate analyses were performed on the data. RESULTS: Of the 702 patients included in the study, 173 (24.6%) developed POD. Our analysis revealed that older age (p < 0.001), lower preoperative hemoglobin (p < 0.001), and higher ASA status (p < 0.001), were significant preoperative risk factors for developing POD. The only significant intraoperative risk factor was a higher number of spinal levels that were instrumented (p < 0.001). Higher pain scores on postoperative day 1 (p < 0.001), and lower postoperative hemoglobin (p < 0.001) were associated with increased POD; as were ICU admission (p < 0.001) and increased length of ICU stay (p < 0.001). Patients who developed POD had a longer hospital stay (p < 0.001) with lower rates of discharge to home as opposed to an inpatient facility (p < 0.001). CONCLUSION: Risk factors for POD in older adults undergoing lumbar spinal fusion surgery include advanced age, diabetes, lower preoperative and postoperative hemoglobin, higher ASA grade, greater extent of surgery, and higher postoperative pain scores. Patients with delirium had a higher incidence of postoperative ICU admission, increased length of stay, decreased likelihood of discharge to home and increased mortality, all consistent with prior studies. Further studies may determine whether adequate management of anemia and pain lead to a reduction in the incidence of postoperative delirium in these patients.


Asunto(s)
Delirio , Fusión Vertebral , Anciano , Delirio/diagnóstico , Delirio/epidemiología , Delirio/etiología , Humanos , Dolor Postoperatorio , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo , Fusión Vertebral/efectos adversos
18.
Cereb Cortex ; 33(2): 469-485, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35297483

RESUMEN

Novelty detection is a primitive subcomponent of cognitive control that can be deficient in Parkinson's disease (PD) patients. Here, we studied the corticostriatal mechanisms underlying novelty-response deficits. In participants with PD, we recorded from cortical circuits with scalp-based electroencephalography (EEG) and from subcortical circuits using intraoperative neurophysiology during surgeries for implantation of deep brain stimulation (DBS) electrodes. We report three major results. First, novel auditory stimuli triggered midfrontal low-frequency rhythms; of these, 1-4 Hz "delta" rhythms were linked to novelty-associated slowing, whereas 4-7 Hz "theta" rhythms were specifically attenuated in PD. Second, 32% of subthalamic nucleus (STN) neurons were response-modulated; nearly all (94%) of these were also modulated by novel stimuli. Third, response-modulated STN neurons were coherent with midfrontal 1-4 Hz activity. These findings link scalp-based measurements of neural activity with neuronal activity in the STN. Our results provide insight into midfrontal cognitive control mechanisms and how purported hyperdirect frontobasal ganglia circuits evaluate new information.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Electroencefalografía , Neuronas/fisiología
19.
J Acoust Soc Am ; 150(3): 2131, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34598595

RESUMEN

Speech perception (especially in background noise) is a critical problem for hearing-impaired listeners and an important issue for cognitive hearing science. Despite a plethora of standardized measures, few single-word closed-set tests uniformly sample the most frequently used phonemes and use response choices that equally sample phonetic features like place and voicing. The Iowa Test of Consonant Perception (ITCP) attempts to solve this. It is a proportionally balanced phonemic word recognition task designed to assess perception of the initial consonant of monosyllabic consonant-vowel-consonant (CVC) words. The ITCP consists of 120 sampled CVC words. Words were recorded from four different talkers (two female) and uniformly sampled from all four quadrants of the vowel space to control for coarticulation. Response choices on each trial are balanced to equate difficulty and sample a single phonetic feature. This study evaluated the psychometric properties of ITCP by examining reliability (test-retest) and validity in a sample of online normal-hearing participants. Ninety-eight participants completed two sessions of the ITCP along with standardized tests of words and sentence in noise (CNC words and AzBio sentences). The ITCP showed good test-retest reliability and convergent validity with two popular tests presented in noise. All the materials to use the ITCP or to construct your own version of the ITCP are freely available [Geller, McMurray, Holmes, and Choi (2020). https://osf.io/hycdu/].


Asunto(s)
Percepción del Habla , Femenino , Humanos , Iowa , Ruido/efectos adversos , Fonética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA