Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Genome Biol ; 25(1): 256, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375777

RESUMEN

BACKGROUND: Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS: Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION: In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Glioblastoma/radioterapia , Glioblastoma/genética , Glioblastoma/patología , Animales , Ratones , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Análisis de la Célula Individual , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Lancet Oncol ; 25(10): e512-e519, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39362262

RESUMEN

Patients with brain tumours are motivated to participate in clinical trials involving repeat tissue sampling. Normalising the use of neoadjuvant and staged surgical trials necessitates collaboration among patients, regulatory agencies, and researchers. Initial and repetitive tissue sampling plays a crucial role in enhancing our understanding of resistance mechanisms and vulnerabilities in brain tumour therapy. Standardising biopsy techniques and ensuring technical uniformity across institutions are vital for effective interinstitutional collaboration. Although liquid biopsy technologies hold promise, they are not yet ready to replace tissue analysis. Clear communication about the risks and benefits of biopsies is essential, particularly regarding potential postoperative deficits. Changes in mindset and neurosurgical culture are imperative to achieve much needed breakthroughs in the development of new, effective therapies for brain tumours.


Asunto(s)
Neoplasias Encefálicas , Desarrollo de Medicamentos , Glioma , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Antineoplásicos/uso terapéutico
3.
Artículo en Inglés | MEDLINE | ID: mdl-39248466

RESUMEN

BACKGROUND AND OBJECTIVES: Although diffuse gliomas in the primary somatosensory cortex (S1) are often considered resectable, gliomas in the primary motor cortex require motor mapping to preserve motor function. Recent evidence indicates that some somatosensory cortex neurons may trigger motor responses, necessitating refined somatosensory mapping techniques. METHODS: Using piezoelectric tactile stimulators on patients' faces and hands, we delivered 25 Hz vibrations and prompted patients to discriminate between dermatomes. Testing included areas contralateral to tumor-infiltrated and to non-tumor-infiltrated cortical regions. Sensory thresholds were determined by reducing stimulus intensity based on performance. Intraoperatively, electrocorticography electrode arrays were used to map sensory responses, and postoperative assessments evaluated sensory outcomes. RESULTS: The high-grade glioma case involved a 61-year-old man with right-sided weakness and numbness with a left parietal mass on MRI. Preoperative testing showed that the average vibratory detection threshold of the hand contralateral to the suspected tumor site was significantly higher than that of the hand contralateral to healthy cortex (P < .001). Intraoperative mapping confirmed the absence of functional involvement in cortical structures overlying the tumor. Postoperative imaging confirmed gross total resection, and sensory vibratory thresholds were normalized (P = .51). The low-grade glioma case included a 54-year-old man with a left parietal nonenhancing mass on MRI. No baseline sensory impairments were found on preoperative testing. Intraoperative mapping identified motor and sensory cortices, guiding tumor resection while preserving motor function. Postoperative MRI confirmed near-total resection, but new sensory impairments were noted in the hand and face contralateral to the resection site (P < .001). These deficits resolved by postoperative day 11, with no evidence of tumor progression on follow-up imaging. CONCLUSION: The sensory discrimination task provides a quantifiable method for assessing sensory changes and functional outcomes related to glioma. This technique enhances our understanding of how glioma infiltration remodels sensory systems and affects clinical outcomes in patients.

4.
Lancet Oncol ; 25(9): e404-e419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39214112

RESUMEN

Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.


Asunto(s)
Neoplasias Encefálicas , Glioma , Organización Mundial de la Salud , Humanos , Glioma/cirugía , Glioma/patología , Glioma/clasificación , Glioma/mortalidad , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/mortalidad , Algoritmos , Adulto , Procedimientos Neuroquirúrgicos/efectos adversos , Resultado del Tratamiento
5.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001492

RESUMEN

Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

6.
World Neurosurg ; 190: 350-361.e20, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38968990

RESUMEN

BACKGROUND: Subcortical brain mapping in awake glioma surgery might optimize the extent of resection while minimizing neurological morbidity, but it requires a correct interpretation of responses evoked during surgery. To define, with a systematic review: 1) a comprehensive 'map' of the principal white matter bundles involved in awake surgery on language-related networks, describing the most employed tests and the expected responses; 2) In linguistics, a false friend is a word in a different language that looks or sounds like a word in given language but differs significantly in meaning. Similarly, our aim is to give the surgeons a comprehensive review of potentially misleading responses, namely "false friends", in subcortical language mapping. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Standardized data extraction was conducted. RESULTS: Out of a total of 224 initial papers, 67 were included for analysis. Expected responses, common tests, and potential "false friends" were recorded for each of the following white matter bundles: frontal aslant tract, superior and inferior longitudinal fascicles, arcuate fascicle, inferior fronto-occipital fascicle, uncinate fascicle. Practical examples are discussed to underline the risk of intraoperative fallouts ("false friends") that might lead to an early interruption (false positive) or a risky surgical removal (false negative). CONCLUSIONS: This paper represents a critical review of the present status of subcortical awake mapping and underlines practical "false-friend" in mapping critical crossroads in language-related networks.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Glioma , Lenguaje , Humanos , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/cirugía , Glioma/diagnóstico por imagen , Vigilia/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/cirugía
7.
World Neurosurg ; 189: 118-126, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38857864

RESUMEN

BACKGROUND: Low-income countries (LICs) and lower-middle-income countries (LMICs) are presented with unique challenges and opportunities when performing awake craniotomy (AC) for brain tumors. These circumstances arise from factors that are financial, infrastructural, educational, personnel, and sociocultural in nature. METHODS: We performed a systematic narrative review of series on AC for intra-axial brain tumors in LICs/LMICs using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, focusing on the challenges and opportunities in these settings. The PubMed, Scopus, and Web of Science databases were searched. RESULTS: After initially identifying 74 studies, inclusion-exclusion criteria were applied, leaving a total of 14 studies included in the review. These involved 409 patients who underwent AC in LICs/LMICs. These series were from India, Ghana, Nigeria, Iran, Pakistan, Morocco, the Philippines, and Egypt. The most common pathology encountered were gliomas (10-70%). Most studies (11/14, 78.5%) reported on their technique of cortical-subcortical mapping. All reported on motor mapping and 8 of these performed language mapping. The most common outcomes reported were seizure and neurologic deficits, and longest follow-up was at 1 year. Challenges noted were lack of equipment and trained personnel, need for validated tests for the local setting, and sociocultural factors. Opportunities identified were volume for training, technique innovation, and international collaboration. CONCLUSIONS: There are numerous challenges and opportunities that arise when performing AC in LICs/LMICs. A collaborative approach toward harnessing the opportunities, and seeking creative solutions to address the challenges, would provide an ideal mechanism toward advancing neurosurgical care and specialty worldwide.


Asunto(s)
Neoplasias Encefálicas , Craneotomía , Países en Desarrollo , Vigilia , Humanos , Neoplasias Encefálicas/cirugía , Craneotomía/métodos , Procedimientos Neuroquirúrgicos/métodos
8.
Neurosurgery ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712941

RESUMEN

BACKGROUND AND OBJECTIVES: Direct cortical stimulation (DCS) mapping enables the identification of functional language regions within and around gliomas before tumor resection. Intraoperative mapping is required because glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but has decreased ability to encode information for complex tasks. It is unknown whether task complexity influenced DCS mapping results. We aim to understand correlations between audiovisual picture naming (PN) task complexity and DCS error rate. We also asked what functional and oncological factors might be associated with higher rates of erroneous responses. METHODS: We retrospectively reviewed intraoperative PN and word reading (WR) task performance during awake DCS language mapping for resection of dominant hemisphere World Health Organization grade 2 to 4 gliomas. The complexity of word tested in PN/WR tasks, patient characteristics, and tumor characteristics were compared between correct and incorrect trials. RESULTS: Between 2017 and 2021, 74 patients met inclusion criteria. At median 18.6 months of follow-up, 73.0% were alive and 52.7% remained recurrence-free. A total of 2643 PN and 978 WR trials were analyzed. A greater number of syllables in PN was associated with a higher DCS error rate (P = .001). Multivariate logistic regression found that each additional syllable in PN tasks independently increased odds of error by 2.40 (P < .001). Older age was also an independent correlate of higher error rate (P < .043). World Health Organization grade did not correlate with error rate (P = .866). More severe language impairment before surgery correlated with worse performance on more complex intraoperative tasks (P < .001). A higher error rate on PN testing did not correlate with lower extent of glioma resection (P = .949). CONCLUSION: Word complexity, quantified by the number of syllables, is associated with higher error rates for intraoperative PN tasks but does not affect extent of resection.

9.
Mod Pathol ; 37(6): 100488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588881

RESUMEN

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Glioma/metabolismo , Glioma/genética , Ratones , Biomarcadores de Tumor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad , Manejo de Especímenes/métodos
10.
J Neurooncol ; 168(1): 77-89, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492191

RESUMEN

PURPOSE: Aggressive resection in surgically-accessible glioblastoma (GBM) correlates with improved survival over less extensive resections. However, the clinical impact of performing a biopsy before definitive resection have not been previously evaluated. METHODS: We analyzed 17,334 GBM patients from the NCDB from 2010-2014. We categorized them into: "upfront resection" and "biopsy followed by resection". The outcomes of interes included OS, 30-day readmission/mortality, 90-day mortality, and length of hospital stay (LOS). The Kaplan-Meier methods and accelerated failure time (AFT) models were applied for survival analysis. Multivariable binary logistic regression were performed to compare differences among groups. Multiple imputation and propensity score matching (PSM) were conducted for validation. RESULTS: "Upfront resection" had superior OS over "biopsy followed by resection" (median OS:12.4 versus 11.1 months, log-rank p = 0.001). Similarly, multivariable AFT models favored "upfront resection" (time ratio[TR]:0.83, 95%CI: 0.75-0.93, p = 0.001). Patients undergoing "upfront gross-total resection (GTR)" had higher OS over "upfront subtotal resection (STR)", "GTR following STR", and "GTR or STR following initial biopsy" (14.4 vs. 10.3, 13.5, 13.3, and 9.1 months;TR: 1.00 [Ref.], 0.75, 0.82, 0.88, and 0.67). Recent years of diagnosis, higher income, facilities located in Southern regions, and treatment at academic facilities were significantly associated with the higher likelihood of undergoing upfront resection. Multivariable regression showed a decreased 30 and 90-day mortality for patients undergoing "upfront resection", 73% and 44%, respectively (p < 0.001). CONCLUSIONS: Pre-operative biopsies for surgically accessible GBM are associated with worse survival despite subsequent resection compared to patients undergoing upfront resection.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/cirugía , Glioblastoma/patología , Glioblastoma/mortalidad , Femenino , Masculino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Persona de Mediana Edad , Biopsia , Anciano , Procedimientos Neuroquirúrgicos/métodos , Bases de Datos Factuales , Adulto , Tiempo de Internación/estadística & datos numéricos
11.
J Natl Cancer Inst ; 116(6): 789-794, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38427849

RESUMEN

The US National Cancer Act of 1971 designated the director of the National Cancer Institute as responsible for coordinating federal agencies and nonfederal organizations to make progress against cancer. As part of her role, the immediate past director of the National Cancer Institute (MMB) led the development of a National Cancer Plan that was formally released on April 3, 2023. The plan includes 8 aspirational goals "to achieve a society where every person with cancer lives a full and active life and to prevent most cancers so that few people need to face this diagnosis." Research findings provide a foundation for each goal, and research gaps are included in the strategies for meeting each goal. The President's Cancer Panel, also created by the National Cancer Act, conducted an initial assessment of progress toward the plan goals by hearing from 12 organizations at a virtual public meeting on September 7, 2023. The purpose of this commentary is to orient the scientific community to the plan and call attention to related knowledge gaps that could benefit from research.


Asunto(s)
National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos/epidemiología , Neoplasias/epidemiología , Neoplasias/prevención & control , Neoplasias/terapia , Investigación Biomédica/organización & administración
13.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216587

RESUMEN

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Asunto(s)
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patología , Epigénesis Genética , Reprogramación Celular/genética , Microambiente Tumoral/genética
14.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242087

RESUMEN

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigenómica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Análisis de la Célula Individual , Microambiente Tumoral , Heterogeneidad Genética
15.
J Neurosurg ; 140(1): 80-93, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382331

RESUMEN

OBJECTIVE: Maximal safe resection is the standard of care for patients presenting with lesions concerning for glioblastoma (GBM) on magnetic resonance imaging (MRI). Currently, there is no consensus on surgical urgency for patients with an excellent performance status, which complicates patient counseling and may increase patient anxiety. This study aims to assess the impact of time to surgery (TTS) on clinical and survival outcomes in patients with GBM. METHODS: This is a retrospective study of 145 consecutive patients with newly diagnosed IDH-wild-type GBM who underwent initial resection at the University of California, San Francisco, between 2014 and 2016. Patients were grouped according to the time from diagnostic MRI to surgery (i.e., TTS): ≤ 7, > 7-21, and > 21 days. Contrast-enhancing tumor volumes (CETVs) were measured using software. Initial CETV (CETV1) and preoperative CETV (CETV2) were used to evaluate tumor growth represented as percent change (ΔCETV) and specific growth rate (SPGR; % growth/day). Overall survival (OS) and progression-free survival (PFS) were measured from the date of resection and were analyzed using the Kaplan-Meier method and Cox regression analyses. RESULTS: Of the 145 patients (median TTS 10 days), 56 (39%), 53 (37%), and 36 (25%) underwent surgery ≤ 7, > 7-21, and > 21 days from initial imaging, respectively. Median OS and PFS among the study cohort were 15.5 and 10.3 months, respectively, and did not differ among the TTS groups (p = 0.81 and 0.17, respectively). Median CETV1 was 35.9, 15.7, and 10.2 cm3 across the TTS groups, respectively (p < 0.001). Preoperative biopsy and presenting to an outside hospital emergency department were associated with an average 12.79-day increase and 9.09-day decrease in TTS, respectively. Distance from the treating facility (median 57.19 miles) did not affect TTS. In the growth cohort, TTS was associated with an average 2.21% increase in ΔCETV per day; however, there was no effect of TTS on SPGR, Karnofsky Performance Status (KPS), postoperative deficits, survival, discharge location, or hospital length of stay. Subgroup analyses did not identify any high-risk groups for which a shorter TTS may be beneficial. CONCLUSIONS: An increased TTS for patients with imaging concerning for GBM did not impact clinical outcomes, and while there was a significant association with ΔCETV, SPGR remained unaffected. However, SPGR was associated with a worse preoperative KPS, which highlights the importance of tumor growth speed over TTS. Therefore, while it is ill advised to wait an unnecessarily long time after initial imaging studies, these patients do not require urgent/emergency surgery and can seek tertiary care opinions and/or arrange for additional preoperative support/resources. Future studies are needed to explore subgroups for whom TTS may impact clinical outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Glioblastoma/tratamiento farmacológico , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Procedimientos Neuroquirúrgicos/métodos , Imagen por Resonancia Magnética
16.
J Neurosurg ; 140(1): 10-17, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37410629

RESUMEN

OBJECTIVE: Risk-standardized mortality rates (RSMRs) have recently been shown to outperform facility case volume as a proxy for surgical quality in lung and gastrointestinal cancer. The aim of this study was to investigate RSMR as a surgical quality metric in primary CNS cancer. METHODS: This retrospective observational cohort study used data from the National Cancer Database, a population-based oncology outcomes database sourced from more than 1500 institutions in the United States, and included adult patients 18 years of age and older who were diagnosed with glioblastoma, pituitary adenoma, or meningioma and were treated with surgery. For each group, RSMR quintiles and annual volume were calculated in a training set (2009-2013) and these thresholds were applied to the validation set (2014-2018). In this paper, the authors compared the effectiveness and efficiency of facility volume-based versus RSMR-based hospital centralization models and evaluated the overlap between the two systems. A patterns-of-care analysis was also performed to explore socioeconomic predictors of being treated at better-performing treating facilities. RESULTS: A total of 37,838 meningioma, 21,189 pituitary adenoma, and 30,788 glioblastoma patients were surgically treated from 2014 to 2018. There were substantial differences between RSMR and facility volume classification schemes among all tumor types. In an RSMR-based centralization model, an average of 36 patients undergoing glioblastoma surgery would need to relocate to a low-mortality hospital to prevent one 30-day mortality following surgery, whereas 46 would need to relocate to a high-volume hospital. For pituitary adenoma and meningioma, both metrics were inefficient in centralizing care to reduce surgical mortality. Additionally, overall survival for glioblastoma patients was better modeled in an RSMR classification scheme. Analyses to investigate the impact of care disparities found that Black and Hispanic patients, patients earning less than $38,000, and uninsured patients were more likely to be treated at high-mortality hospitals. CONCLUSIONS: RSMR is more effective and efficient than a traditional volume-based approach for preventing early postoperative death in glioblastoma surgery. These data have important implications for future quality-related studies in neurosurgical oncology and may be relevant for healthcare/insurance payments, hospital evaluation assessments, healthcare disparities, and the standardization of care across hospitals.


Asunto(s)
Glioblastoma , Neoplasias Meníngeas , Meningioma , Neoplasias Hipofisarias , Adulto , Humanos , Estados Unidos/epidemiología , Adolescente , Estudios Retrospectivos , Indicadores de Calidad de la Atención de Salud , Mortalidad Hospitalaria
17.
Neuro Oncol ; 26(2): 335-347, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37758193

RESUMEN

BACKGROUND: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS: A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION: The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Vacunas contra el Cáncer , Glioma , Péptidos , Humanos , Proyectos Piloto , Leucocitos Mononucleares , Estudios Prospectivos , Glioma/tratamiento farmacológico , Diferenciación Celular , Microambiente Tumoral
18.
J Neurosurg ; 140(4): 1029-1037, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856395

RESUMEN

OBJECTIVE: Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. Here, the authors review their results with triple-modality asleep motor mapping with motor evoked potentials and bipolar and monopolar stimulation for cortical and subcortical mapping during glioma surgery in an expanded cohort. METHODS: This was a retrospective analysis of patients who underwent resection of a perirolandic glioma near motor pathways. Clinical and neuromonitoring data were extracted from the electronic medical records for review. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. Regression analyses were performed to assess factors associated with a persistent motor deficit. RESULTS: Between January 2018 and December 2021, 160 operations were performed in 151 patients with perirolandic glioma. Sixty-four patients (40%) had preoperative motor deficits, and the median extent of resection was 98%. Overall, patients in 38 cases (23.8%) had new or worse immediate postoperative deficits by discharge, and persistent deficits by 6 months were seen in 6 cases (3.8%), all in patients with high-grade gliomas. There were no new persistent deficits in low-grade glioma patients (0%). The risk factors for a persistent deficit included an insular tumor component (OR 8.6, p = 0.01), preoperative motor weakness (OR 8.1, p = 0.03), intraoperative motor evoked potential (MEP) changes (OR 36.5, p < 0.0001), and peri-resection cavity ischemia (OR 7.5, p = 0.04). Most persistent deficits were attributable to ischemic injury despite structural preservation of the descending motor tracts. For patients with persistent motor deficits, there were 3 cases (50%) in which a change in MEP was noted but subsequent subcortical monopolar stimulation still elicited a response in the corresponding muscle groups, suggesting axonal activation distal to a point of injury. CONCLUSIONS: Asleep triple motor mapping results in a low rate of permanent deficits, especially for low-grade gliomas. Peri-resection cavity ischemia continues to be a significant risk factor for permanent deficit despite maintaining appropriate distance for subcortical tracts based on monopolar feedback.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patología , Estudios Retrospectivos , Monitoreo Intraoperatorio/métodos , Mapeo Encefálico/métodos , Glioma/patología , Isquemia/cirugía , Potenciales Evocados Motores/fisiología
19.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645893

RESUMEN

Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

20.
J Neurosurg ; 140(2): 328-337, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548547

RESUMEN

OBJECTIVE: The relationship between brain metastasis resection and risk of nodular leptomeningeal disease (nLMD) is unclear. This study examined genomic alterations found in brain metastases with the aim of identifying alterations associated with postoperative nLMD in the context of clinical and treatment factors. METHODS: A retrospective, single-center study was conducted on patients who underwent resection of brain metastases between 2014 and 2022 and had clinical and genomic data available. Postoperative nLMD was the primary endpoint of interest. Targeted next-generation sequencing of > 500 oncogenes was performed in brain metastases. Cox proportional hazards analyses were performed to identify clinical features and genomic alterations associated with nLMD. RESULTS: The cohort comprised 101 patients with tumors originating from multiple cancer types. There were 15 patients with nLMD (14.9% of the cohort) with a median time from surgery to nLMD diagnosis of 8.2 months. Two supervised machine learning algorithms consistently identified CDKN2A/B codeletion and ERBB2 amplification as the top predictors associated with postoperative nLMD across all cancer types. In a multivariate Cox proportional hazards analysis including clinical factors and genomic alterations observed in the cohort, tumor volume (× 10 cm3; HR 1.2, 95% CI 1.01-1.5; p = 0.04), CDKN2A/B codeletion (HR 5.3, 95% CI 1.7-16.9; p = 0.004), and ERBB2 amplification (HR 3.9, 95% CI 1.1-14.4; p = 0.04) were associated with a decreased time to postoperative nLMD. CONCLUSIONS: In addition to increased resected tumor volume, ERBB2 amplification and CDKN2A/B deletion were independently associated with an increased risk of postoperative nLMD across multiple cancer types. Additional work is needed to determine if targeted therapy decreases this risk in the postoperative setting.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Resultado del Tratamiento , Estudios Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/secundario , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...