Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 10(14): e020656, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34259011

RESUMEN

Background In cardiovascular diseases, atherosclerotic disorder are the most frequent and important with respect to morbidity and mortality. Inflammation mediated by immune cells is central in all parts of the atherosclerotic progress, and further understanding of the underlying mechanisms is needed. Growing evidence suggests that deamination of adenosine-to-inosine in RNA is crucial for a correct immune response; nevertheless, the role of adenosine-to-inosine RNA editing in atherogenesis has barely been studied. Several proteins have affinity for inosines in RNA, one being ENDOV (endonuclease V), which binds and cleaves RNA at inosines. Data on ENDOV in atherosclerosis are lacking. Methods and Results Quantitative polymerase chain reaction on ENDOV mRNA showed an increased level in human carotid atherosclerotic plaques compared with control veins. Inosine-ribonuclease activity as measured by an enzyme activity assay is detected in immune cells relevant for the atherosclerotic process. Abolishing EndoV in atherogenic apolipoprotein E-deficient (ApoE-/-) mice reduces the atherosclerotic plaque burden, both in size and lipid content. In addition, in a brain stroke model, mice without ENDOV suffer less damage than control mice. Finally, lack of EndoV reduces the recruitment of monocytes to atherosclerotic lesions in atherogenic ApoE-/- mice. Conclusions ENDOV is upregulated in human atherosclerotic lesions, and data from mice suggest that ENDOV promotes atherogenesis by enhancing the monocyte recruitment into the atherosclerotic lesion, potentially by increasing the effect of CCL2 activation on these cells.


Asunto(s)
Aorta Torácica/patología , Aterosclerosis/genética , Quimiocina CCL2/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Regulación de la Expresión Génica , Monocitos/metabolismo , ARN/genética , Anciano , Animales , Aorta Torácica/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Quimiocina CCL2/biosíntesis , Citocinas , Desoxirribonucleasa (Dímero de Pirimidina)/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/patología , Estudios Retrospectivos
2.
Nucleic Acids Res ; 48(8): 4463-4479, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083667

RESUMEN

Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV-/- tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV-/- livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV-/- tumor suppressive phenotype calls for related studies in human HCC.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina)/genética , Neoplasias Hepáticas Experimentales/genética , Adenosina/metabolismo , Animales , Antineoplásicos/farmacología , Carcinogénesis , Línea Celular , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Expresión Génica , Humanos , Inosina/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones Noqueados , Edición de ARN , ARN de Transferencia/metabolismo , Análisis de Secuencia de ARN , Sorafenib/farmacología
3.
PLoS One ; 14(11): e0225081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31703097

RESUMEN

Endonuclease V (ENDOV) is a ribonuclease with affinity for inosine which is the deamination product of adenosine. The genomes of most organisms, including human, encode ENDOV homologs, yet knowledge about in vivo functions and gene regulation is sparse. To contribute in this field, we analyzed mRNA and protein expression of human ENDOV (hENDOV). Analyses of public sequence databases revealed numerous hENDOV transcript variants suggesting extensive alternative splicing. Many of the transcripts lacked one or more exons corresponding to conserved regions of the ENDOV core domain, suggesting that these transcripts do not encode for active proteins. Three complete transcripts were found with open reading frames encoding 282, 308 and 309 amino acids, respectively. Recombinant hENDOV 308 and hENDOV 309 share the same cleavage activity as hENDOV 282 which is the variant that has been used in previous studies of hENDOV. However, hENDOV 309 binds inosine-containing RNA with stronger affinity than the other isoforms. Overexpressed GFP-fused isoforms were found in cytoplasm, nucleoli and arsenite induced stress granules in human cells as previously reported for hENDOV 282. RT-qPCR analysis of the 3'-termini showed that hENDOV 308 and hENDOV 309 transcripts are more abundant than hENDOV 282 transcripts in immortalized cell lines, but not in primary cells, suggesting that cells regulate hENDOV mRNA expression. In spite of the presence of all three full-length transcripts, mass spectrometry analyses identified peptides corresponding to the hENDOV 309 isoform only. This result suggests that further studies of human ENDOV should rather encompass the hENDOV 309 isoform.


Asunto(s)
Empalme Alternativo , Desoxirribonucleasa (Dímero de Pirimidina)/genética , ARN Mensajero/genética , Proteínas Virales/genética , Línea Celular , Humanos , Isoformas de Proteínas
4.
J Biol Chem ; 291(41): 21786-21801, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27573237

RESUMEN

Endonuclease V (EndoV) is an enzyme with specificity for inosines in nucleic acids. Whereas the bacterial homologs are active on both DNA and RNA, the mammalian variants only cleave RNA, at least when assayed with recombinant proteins. Here we show that ectopically expressed, as well as endogenously expressed human (h)EndoV, share the same enzymatic properties as the recombinant protein and cleaves RNA with inosine but not DNA. In search for proteins interacting with hEndoV, polyadenylate-binding protein C1 (PABPC1) was identified. The association between PABPC1 and hEndoV is RNA dependent and furthermore, PABPC1 stimulates hEndoV activity and affinity for inosine-containing RNA. Upon cellular stress, PABPC1 relocates to cytoplasmic stress granules that are multimolecular aggregates of stalled translation initiation complexes formed to aid cell recovery. Arsenite, as well as other agents, triggered relocalization also of hEndoV to cytoplasmic stress granules. As inosines in RNA are highly abundant, hEndoV activity is likely regulated in cells to avoid aberrant cleavage of inosine-containing transcripts. Indeed, we find that hEndoV cleavage is inhibited by normal intracellular ATP concentrations. The ATP stores inside a cell do not overlay stress granules and we suggest that hEndoV is redistributed to stress granules as a strategy to create a local environment low in ATP to permit hEndoV activity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Gránulos Citoplasmáticos/enzimología , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , ARN/metabolismo , Adenosina Trifosfato/genética , Arsenitos/farmacología , Gránulos Citoplasmáticos/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Células HEK293 , Células HeLa , Humanos , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...