Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(3): 666-689, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299356

RESUMEN

BACKGROUND: Endothelial cells are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. The mechanoresponsive activity of YAP (Yes-associated protein) and its role in vascular development are well described; however, whether changes to transcription or epigenetic regulation of YAP are involved in these processes remains unanswered. Furthermore, how mechanical forces are transduced to the nucleus to drive transcriptional reprogramming in endothelial cells is poorly understood. The YAP target gene, AmotL2 (angiomotin-like 2), is a junctional mechanotransducer that connects cell-cell junctions to the nuclear membrane via the actin cytoskeleton. METHODS: We applied mechanical manipulations including shear flow, stretching, and substrate stiffness to endothelial cells to investigate the role of mechanical forces in modulating YAP transcription. Using in vitro and in vivo endothelial depletion of AmotL2, we assess nuclear morphology, chromatin organization (using transposase-accessible chromatin sequencing), and whole-mount immunofluorescent staining of the aorta to determine the regulation and functionality of YAP. Finally, we use genetic and chemical inhibition to uncouple the nuclear-cytoskeletal connection to investigate the role of this pathway on YAP transcription. RESULTS: Our results reveal that mechanical forces sensed at cell-cell junctions by the YAP target gene AmotL2 are directly involved in changes in global chromatin accessibility and activity of the histone methyltransferase EZH2, leading to modulation of YAP promotor activity. Functionally, shear stress-induced proliferation of endothelial cells in vivo was reliant on AmotL2 and YAP/TAZ (transcriptional coactivator with PDZ-binding motif) expression. Mechanistically, uncoupling of the nuclear-cytoskeletal connection from junctions and focal adhesions led to altered nuclear morphology, chromatin accessibility, and YAP promotor activity. CONCLUSIONS: Our findings reveal a role for AmotL2 and nuclear-cytoskeletal force transmission in modulating the epigenetic and transcriptional regulation of YAP to maintain a mechano-enforced positive feedback loop of vascular homeostasis. These findings may offer an explanation as to the proinflammatory phenotype that leads to aneurysm formation observed in AmotL2 endothelial deletion models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transactivadores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transactivadores/metabolismo , Mecanotransducción Celular , Células Endoteliales/metabolismo , Epigénesis Genética , Cromatina
2.
J Mol Med (Berl) ; 101(10): 1323-1333, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37698712

RESUMEN

Degenerative ascending aortic aneurysm (AscAA) is a silent and potentially fatal disease characterized by excessive vascular inflammation and fibrosis. We aimed to characterize the cellular and molecular signature for the fibrotic type of endothelial mesenchymal transition (EndMT) that has previously been described in degenerative AscAA. Patients undergoing elective open-heart surgery for AscAA and/or aortic valve repair were recruited. Gene expression in the intima-media of the ascending aorta was measured in 22 patients with non-dilated and 24 with dilated aortas, and candidate genes were identified. Protein expression was assessed using immunohistochemistry. Interacting distal gene enhancer regions were identified using targeted chromosome conformation capture (HiCap) in untreated and LPS-treated THP1 cells, and the associated transcription factors were analyzed. Differential expression analysis identified SPP1 (osteopontin) as a key gene in the signature of fibrotic EndMT in patients with degenerative AscAA. The aortic intima-media expression of SPP1 correlated with the expression of inflammatory markers, the level of macrophage infiltration, and the aortic diameter. HiCap analysis, followed by transcription factor binding analysis, identified ETS1 as a potential regulator of SPP1 expression under inflammatory conditions. In conclusion, the present findings suggest that SPP1 may be involved in the development of the degenerative type of AscAA. KEY MESSAGES: In the original manuscript titled "SPP1/osteopontin, a driver of fibrosis and inflammation in degenerative ascending aortic aneurysm?" by David Freiholtz, Otto Bergman, Saliendra Pradhananga, Karin Lång, Flore-Anne Poujade, Carl Granath, Christian Olsson, Anders Franco-Cereceda, Pelin Sahlén, Per Eriksson, and Hanna M Björck, we present novel findings on regulatory factors on osteopontin (SPP1) expression in immune cells involved in degenerative ascending aortic aneurysms (AscAA). The central findings convey: SPP1 is a potential driver of the fibrotic endothelial-to-mesenchymal transition in AscAA. SPP1/osteopontin expression in AscAA is predominately by immune cells. ETS1 is a regulatory transcription factor of SPP1 expression in AscAA immune cells.

3.
Cardiovasc Res ; 119(16): 2594-2606, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37475157

RESUMEN

AIMS: To define endotypes of carotid subclinical atherosclerosis. METHODS AND RESULTS: We integrated demographic, clinical, and molecular data (n = 124) with ultrasonographic carotid measurements from study participants in the IMPROVE cohort (n = 3340). We applied a neural network algorithm and hierarchical clustering to identify carotid atherosclerosis endotypes. A measure of carotid subclinical atherosclerosis, the c-IMTmean-max, was used to extract atherosclerosis-related features and SHapley Additive exPlanations (SHAP) to reveal endotypes. The association of endotypes with carotid ultrasonographic measurements at baseline, after 30 months, and with the 3-year atherosclerotic cardiovascular disease (ASCVD) risk was estimated by linear (ß, SE) and Cox [hazard ratio (HR), 95% confidence interval (CI)] regression models. Crude estimates were adjusted by common cardiovascular risk factors, and baseline ultrasonographic measures. Improvement in ASCVD risk prediction was evaluated by C-statistic and by net reclassification improvement with reference to SCORE2, c-IMTmean-max, and presence of carotid plaques. An ensemble stacking model was used to predict endotypes in an independent validation cohort, the PIVUS (n = 1061). We identified four endotypes able to differentiate carotid atherosclerosis risk profiles from mild (endotype 1) to severe (endotype 4). SHAP identified endotype-shared variables (age, biological sex, and systolic blood pressure) and endotype-specific biomarkers. In the IMPROVE, as compared to endotype 1, endotype 4 associated with the thickest c-IMT at baseline (ß, SE) 0.36 (0.014), the highest number of plaques 1.65 (0.075), the fastest c-IMT progression 0.06 (0.013), and the highest ASCVD risk (HR, 95% CI) (1.95, 1.18-3.23). Baseline and progression measures of carotid subclinical atherosclerosis and ASCVD risk were associated with the predicted endotypes in the PIVUS. Endotypes consistently improved measures of ASCVD risk discrimination and reclassification in both study populations. CONCLUSIONS: We report four replicable subclinical carotid atherosclerosis-endotypes associated with progression of atherosclerosis and ASCVD risk in two independent populations. Our approach based on endotypes can be applied for precision medicine in ASCVD prevention.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Humanos , Factores de Riesgo , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Arterias Carótidas
4.
J Mol Med (Berl) ; 101(7): 801-811, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37162557

RESUMEN

Bicuspid aortic valve (BAV) is the most common congenital heart malformation frequently associated with ascending aortic aneurysm (AscAA). Epithelial to mesenchymal transition (EMT) may play a role in BAV-associated AscAA. The aim of the study was to investigate the type of EMT associated with BAV aortopathy using patients with a tricuspid aortic valve (TAV) as a reference. The state of the endothelium was further evaluated. Aortic biopsies were taken from patients undergoing open-heart surgery. Aortic intima/media miRNA and gene expression was analyzed using Affymetrix human transcriptomic array. Histological staining assessed structure, localization, and protein expression. Migration/proliferation was assessed using ORIS migration assay. We show different EMT types associated with BAV and TAV AscAA. Specifically, in BAV-associated aortopathy, EMT genes related to endocardial cushion formation were enriched. Further, BAV vascular smooth muscle cells were less proliferative and migratory. In contrast, TAV aneurysmal aortas displayed a fibrotic EMT phenotype with medial degenerative insults. Further, non-dilated BAV aortas showed a lower miRNA-200c-associated endothelial basement membrane LAMC1 expression and lower CD31 expression, accompanied by increased endothelial permeability indicated by increased albumin infiltration. Embryonic EMT is a characteristic of BAV aortopathy, associated with endothelial instability and vascular permeability of the non-dilated aortic wall. KEY MESSAGES: Embryonic EMT is a feature of BAV-associated aortopathy. Endothelial integrity is compromised in BAV aortas prior to dilatation. Non-dilated BAV ascending aortas are more permeable than aortas of tricuspid aortic valve patients.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , MicroARNs , Humanos , Enfermedad de la Válvula Aórtica Bicúspide/complicaciones , Enfermedad de la Válvula Aórtica Bicúspide/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide/patología , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/complicaciones , Enfermedades de las Válvulas Cardíacas/metabolismo , Transición Epitelial-Mesenquimal/genética , Válvula Aórtica/metabolismo , MicroARNs/metabolismo , Endotelio/metabolismo , Endotelio/patología
5.
Front Pharmacol ; 13: 988561, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188622

RESUMEN

Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel 'molecular' 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.

6.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35321563

RESUMEN

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Transdiferenciación Celular , Humanos , Lípidos , Ratones , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Represoras/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética , Ultrasonografía
7.
J Allergy Clin Immunol ; 147(5): 1742-1752, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33069716

RESUMEN

BACKGROUND: Hundreds of variants associated with atopic dermatitis (AD) and psoriasis, 2 common inflammatory skin disorders, have previously been discovered through genome-wide association studies (GWASs). The majority of these variants are in noncoding regions, and their target genes remain largely unclear. OBJECTIVE: We sought to understand the effects of these noncoding variants on the development of AD and psoriasis by linking them to the genes that they regulate. METHODS: We constructed genomic 3-dimensional maps of human keratinocytes during differentiation by using targeted chromosome conformation capture (Capture Hi-C) targeting more than 20,000 promoters and 214 GWAS variants and combined these data with transcriptome and epigenomic data sets. We validated our results with reporter assays, clustered regularly interspaced short palindromic repeats activation, and examination of patient gene expression from previous studies. RESULTS: We identified 118 target genes of 82 AD and psoriasis GWAS variants. Differential expression of 58 of the 118 target genes (49%) occurred in either AD or psoriatic lesions, many of which were not previously linked to any skin disease. We highlighted the genes AFG1L, CLINT1, ADO, LINC00302, and RP1-140J1.1 and provided further evidence for their potential roles in AD and psoriasis. CONCLUSIONS: Our work focused on skin barrier pathology through investigation of the interaction profile of GWAS variants during keratinocyte differentiation. We have provided a catalogue of candidate genes that could modulate the risk of AD and psoriasis. Given that only 35% of the target genes are the gene nearest to the known GWAS variants, we expect that our work will contribute to the discovery of novel pathways involved in AD and psoriasis.


Asunto(s)
Cromatina , Dermatitis Atópica/genética , Queratinocitos , Psoriasis/genética , Predisposición Genética a la Enfermedad , Humanos
8.
Arterioscler Thromb Vasc Biol ; 40(11): 2700-2713, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32907367

RESUMEN

OBJECTIVE: There is no medical treatment to prevent abdominal aortic aneurysm (AAA) growth and rupture, both of which are linked to smoking. Our objective was to map the tunica-specific pathophysiology of AAA with consideration of the intraluminal thrombus, age, and sex, and to subsequently identify which mechanisms were linked to smoking and diameter growth rate. Approach and Results: Microarray analyses were performed on 246 samples from 76 AAA patients and 13 controls. In media and adventitia, there were 5889 and 2701 differentially expressed genes, respectively. Gene sets related to adaptive and innate immunity were upregulated in both tunicas. Media-specific gene sets included increased matrix disassembly and angiogenesis, as well as decreased muscle cell development, contraction, and differentiation. Genes implicated in previous genome-wide association studies were dysregulated in media. The intraluminal thrombus had a pro-proteolytic and proinflammatory effect on the underlying media. Active smoking resulted in increased inflammation, oxidative stress, and angiogenesis in all tissues and enriched lipid metabolism in adventitia. Processes enriched with active smoking in control aortas overlapped to a high extent with those differentially expressed between AAAs and controls. The AAA diameter growth rate (n=24) correlated with T- and B-cell expression in media, as well as lipid-related processes in the adventitia. CONCLUSIONS: This tunica-specific analysis of gene expression in a large study enabled the detection of features not previously described in AAA disease. Smoking was associated with increased expression of aneurysm-related processes, of which adaptive immunity and lipid metabolism correlated with growth rate.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/genética , Fumar/efectos adversos , Trombosis/genética , Transcriptoma , Túnica Media/metabolismo , Remodelación Vascular/genética , Inmunidad Adaptativa/genética , Adulto , Anciano , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Estudios de Casos y Controles , Dilatación Patológica , Progresión de la Enfermedad , Femenino , Redes Reguladoras de Genes , Interacción Gen-Ambiente , Humanos , Metabolismo de los Lípidos/genética , Masculino , Persona de Mediana Edad , Factores de Riesgo , Fumar/genética , Fumar/metabolismo , Fumar/patología , Trombosis/metabolismo , Trombosis/patología , Túnica Media/patología
9.
JVS Vasc Sci ; 1: 13-27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34617037

RESUMEN

OBJECTIVE: Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. METHODS: Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. RESULTS: Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. CONCLUSIONS: We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal "roadmap" of vascular healing as a publicly available resource for the research community.

10.
Int J Obes (Lond) ; 44(2): 377-387, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31164724

RESUMEN

BACKGROUND: Transcriptome analysis of abdominal subcutaneous white adipose tissue (sWAT) has identified important obesity-associated disturbances. However, the relation between sWAT transcriptome and long-term future changes in body weight remains elusive. OBJECTIVE: To investigate sWAT transcriptome signatures before and after long-term weight changes and assess their predictive value for body weight changes. DESIGN: A total of 56 women were followed longitudinally and subdivided into weight-stable (WS, n = 25), weight-gaining (WG, n = 14) and weight-losing (WL, n = 17) groups between baseline and follow-up (13 ± 1 years). The fasting sWAT transcriptome was analyzed by gene microarray at baseline and follow-up. Key genes associated with weight changes were validated using quantitative real-time PCR. RESULTS: In total 285 transcripts exhibited difference (FDR < 30%) in expression fold change over time between WL and WS women. WL women displayed decreased pro-inflammatory (NLRP3) but increased insulin-response gene (FASN and GLUT4) expression over time. In comparison, 461 transcripts displayed difference in expression fold change over time between WG and WS women (P < 0.05). Genes involved in autophagic processes (CDK5, SQSTM1 and FBXL2) were generally upregulated in WG women. At baseline, 307 and 302 transcripts were differentially expressed (FDR < 30%) in WL and WG women, respectively, when independently compared against WS women. Baseline expression of adipogenic and lipogenic genes (PPARG, IRS2 and HACD2) was lower, while pro-fibrotic (COL6A1) was higher, in WL than WS women; whereas protein processing genes were lower expressed in WG than in WS women. CONCLUSION: In adult women, long-term body weight change associates with altered sWAT transcriptome. Expression of genes associated with inflammation, insulin response, adipogenesis and lipogenesis are linked to weight loss. However, other pathways such as autophagy not only associate but also predict future weight gain suggesting that intrinsic factors in sWAT impact tissue expansion.


Asunto(s)
Peso Corporal , Obesidad , Grasa Subcutánea Abdominal/metabolismo , Transcriptoma/genética , Adulto , Peso Corporal/genética , Peso Corporal/fisiología , Femenino , Humanos , Inflamación/genética , Lipogénesis/genética , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Estudios Prospectivos
11.
Eur Heart J ; 40(30): 2495-2503, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31081038

RESUMEN

AIMS: Radiotherapy-induced cardiovascular disease is an emerging problem in a growing population of cancer survivors where traditional treatments, such as anti-platelet and lipid-lowering drugs, have limited benefits. The aim of the study was to investigate vascular inflammatory patterns in human cancer survivors, replicate the findings in an animal model, and evaluate whether interleukin-1 (IL-1) inhibition could be a potential treatment. METHODS AND RESULTS: Irradiated human arterial biopsies were collected during microvascular autologous free tissue transfer for cancer reconstruction and compared with non-irradiated arteries from the same patient. A mouse model was used to study the effects of the IL-1 receptor antagonist, anakinra, on localized radiation-induced vascular inflammation. We observed significant induction of genes associated with inflammasome biology in whole transcriptome analysis of irradiated arteries, a finding supported by elevated protein levels in irradiated arteries of both, pro-caspase and caspase-1. mRNA levels of inflammasome associated chemokines CCL2, CCL5 together with the adhesion molecule VCAM1, were elevated in human irradiated arteries as was the number of infiltrating macrophages. A similar pattern was reproduced in Apoe-/- mouse 10 weeks after localized chest irradiation with 14 Gy. Treatment with anakinra in irradiated mice significantly reduced Ccl2 and Ccl5 mRNA levels and expression of I-Ab. CONCLUSION: Anakinra, administered directly after radiation exposure for 2 weeks, ameliorated radiation induced sustained expression of inflammatory mediators in mice. Further studies are needed to evaluate IL-1 blockade as a treatment of radiotherapy-induced vascular disease in a clinical setting.


Asunto(s)
Arteritis/prevención & control , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1/antagonistas & inhibidores , Traumatismos Experimentales por Radiación/prevención & control , Radioterapia/efectos adversos , Animales , Arteritis/etiología , Quimiocina CCL2/metabolismo , Femenino , Humanos , Interleucina-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias/radioterapia , Traumatismos Experimentales por Radiación/metabolismo
12.
Front Cardiovasc Med ; 6: 182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921896

RESUMEN

Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...