Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 768, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997326

RESUMEN

The Knight-Alzheimer Disease Research Center (Knight-ADRC) at Washington University in St. Louis has pioneered and led worldwide seminal studies that have expanded our clinical, social, pathological, and molecular understanding of Alzheimer Disease. Over more than 40 years, research volunteers have been recruited to participate in cognitive, neuropsychologic, imaging, fluid biomarkers, genomic and multi-omic studies. Tissue and longitudinal data collected to foster, facilitate, and support research on dementia and aging. The Genetics and high throughput -omics core (GHTO) have collected of more than 26,000 biological samples from 6,625 Knight-ADRC participants. Samples available include longitudinal DNA, RNA, non-fasted plasma, cerebrospinal fluid pellets, and peripheral blood mononuclear cells. The GHTO has performed deep molecular profiling (genomic, transcriptomic, epigenomic, proteomic, and metabolomic) from large number of brain (n = 2,117), CSF (n = 2,012) and blood/plasma (n = 8,265) samples with the goal of identifying novel risk and protective variants, identify novel molecular biomarkers and causal and druggable targets. Overall, the resources available at GHTO support the increase of our understanding of Alzheimer Disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Humanos , Genómica , Biomarcadores , Demencia/genética , Proteómica , Multiómica
2.
medRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38947090

RESUMEN

Alzheimer's Disease (AD) biomarker measurement is key to aid in the diagnosis and prognosis of the disease. In the research setting, participant recruitment and retention and optimization of sample use, is one of the main challenges that observational studies face. Thus, obtaining accurate established biomarker measurements for stratification and maximizing use of the precious samples is key. Accurate technologies are currently available for established biomarkers, mainly immunoassays and immunoprecipitation liquid chromatography-mass spectrometry (IP-MS), and some of them are already being used in clinical settings. Although some immunoassays- and IP-MS based platforms provide multiplexing for several different coding proteins there is not a current platform that can measure all the stablished and emerging biomarkers in one run. The NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) is a mid-throughput platform with antibody-based measurements with a sequencing output that requires 15µL of sample volume to measure more than 100 analytes, including those typically assayed for AD. Here we benchmarked and compared the AD-relevant biomarkers including in the NULISA against validated assays, in both CSF and plasma. Overall, we have found that CSF measures of Aß42/40, NfL, GFAP, and p-tau217 are highly correlated and have similar predictive performance when measured by immunoassay, mass-spectrometry or NULISA. In plasma, p-tau217 shows a performance similar to that reported with other technologies when predicting amyloidosis. Other established and exploratory biomarkers (total tau, p-tau181, NRGN, YKL40, sTREM2, VILIP1 among other) show a wide range of correlation values depending on the fluid and the platform. Our results indicate that the multiplexed immunoassay platform produces reliable results for established biomarkers in CSF that are useful in research settings, with the advantage of measuring additional novel biomarkers using minimal sample volume.

3.
Res Sq ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883718

RESUMEN

Alzheimer Disease (AD) is a highly polygenic disease that presents with relatively earlier onset (≤70yo; EOAD) in about 5% of cases. Around 90% of these EOAD cases remain unexplained by pathogenic mutations. Using data from EOAD cases and controls, we performed a genome-wide association study (GWAS) and trans-ancestry meta-analysis on non-Hispanic Whites (NHW, NCase=6,282, NControl=13,386), African Americans (AA NCase=782, NControl=3,663) and East Asians (NCase=375, NControl=838 CO). We identified eight novel significant loci: six in the ancestry-specific analyses and two in the trans-ancestry analysis. By integrating gene-based analysis, eQTL, pQTL and functional annotations, we nominate four novel genes that are involved in microglia activation, glutamate production, and signaling pathways. These results indicate that EOAD, although sharing many genes with LOAD, harbors unique genes and pathways that could be used to create better prediction models or target identification for this type of AD.

4.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687811

RESUMEN

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Transcriptoma/genética , Proteómica/métodos , Masculino , Biomarcadores/metabolismo , Metabolómica/métodos , Aprendizaje Automático , Femenino , Progresión de la Enfermedad , Anciano , Modelos Animales de Enfermedad , Multiómica
5.
iScience ; 26(12): 108534, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38089583

RESUMEN

There is a need for affordable, scalable, and specific blood-based biomarkers for Alzheimer's disease that can be applied to a population level. We have developed and validated disease-specific cell-free transcriptomic blood-based biomarkers composed by a scalable number of transcripts that capture AD pathobiology even in the presymptomatic stages of the disease. Accuracies are in the range of the current CSF and plasma biomarkers, and specificities are high against other neurodegenerative diseases.

6.
Nat Commun ; 14(1): 2314, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085492

RESUMEN

Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Heterocigoto , Microglía/metabolismo , Lóbulo Parietal/metabolismo , ARN/metabolismo
7.
Alzheimers Dement ; 19(5): 1785-1799, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36251323

RESUMEN

INTRODUCTION: The identification of multiple genetic risk factors for Alzheimer's disease (AD) suggests that many pathways contribute to AD onset and progression. However, the metabolomic and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The metabolome can provide a direct image of dysregulated pathways in the brain. METHODS: We interrogated metabolomic signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 (autosomal dominant AD; ADAD), APOE ɛ4, and TREM2 risk variant carriers, and sporadic AD (sAD). RESULTS: We identified 133 unique and shared metabolites associated with ADAD, TREM2, and sAD. We identified a signature of 16 metabolites significantly altered between groups and associated with AD duration. DISCUSSION: AD genetic variants show distinct metabolic perturbations. Investigation of these metabolites may provide greater insight into the etiology of AD and its impact on clinical presentation. HIGHLIGHTS: APP/PSEN1/PSEN2 and TREM2 variant carriers show distinct metabolic changes. A total of 133 metabolites were differentially abundant in AD genetic groups. ß-citrylglutamate is differentially abundant in autosomal dominant, TREM2, and sporadic AD. A 16-metabolite profile shows differences between Alzheimer's disease (AD) genetic groups. The identified metabolic profile is associated with duration of disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patología , Heterocigoto , Lipidómica , Mutación , Presenilina-1/genética
8.
Acta Neuropathol Commun ; 10(1): 29, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246267

RESUMEN

BACKGROUND: Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. METHODS: We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. RESULTS: Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. CONCLUSIONS: Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Mutación , Presenilina-1/genética , Presenilina-1/metabolismo , ARN Circular/genética
9.
Brain ; 145(7): 2394-2406, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35213696

RESUMEN

During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Teorema de Bayes , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , Estudio de Asociación del Genoma Completo , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Estados Unidos
10.
medRxiv ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33173895

RESUMEN

During the first hours after stroke onset neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between NIH stroke scale (NIHSS) within six hours of stroke onset and NIHSS at 24h (ΔNIHSS). A total of 5,876 individuals from seven countries (Spain, Finland, Poland, United States, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of ΔNIHSS variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture than that of stroke risk. Seven loci (2p25.1, 2q31.2, 2q33.3, 4q34.3, 5q33.2, 6q26 and 7p21.1) were genome-wide significant and explained 2.1% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each loci. eQTL mapping and SMR indicate that ADAM23 (log Bayes Factor (LBF)=6.34) was driving the association for 2q33.3. Gene based analyses suggested that GRIA1 (LBF=5.26), which is predominantly expressed in brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated PARK2 (LBF=5.30) and ABCB5 (LBF=5.70) for the 6q26 and 7p21.1 loci. Human brain single nuclei RNA-seq indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23 , a pre-synaptic protein, and GRIA1 , a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provides the first evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischemic stroke. RESEARCH INTO CONTEXT: Evidence before this study: No previous genome-wide association studies have investigated the genetic architecture of early outcomes after ischemic stroke.Added Value of this study: This is the first study that investigated genetic influences on early outcomes after ischemic stroke using a genome-wide approach, revealing seven genome-wide significant loci. A unique aspect of this genetic study is the inclusion of all of the major ethnicities by recruiting from participants throughout the world. Most genetic studies to date have been limited to populations of European ancestry.Implications of all available evidence: The findings provide the first evidence that genes implicating excitotoxicity contribute to human acute ischemic stroke, and demonstrates proof of principle that GWAS of acute ischemic stroke patients can reveal mechanisms involved in ischemic brain injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...