Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-9, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897185

RESUMEN

The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.

2.
J Mol Graph Model ; 124: 108576, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536231

RESUMEN

The dosing and efficacy of chemotherapeutic drugs can be limited by toxicity caused by off-pathway reactions. One hypothesis for how such toxicity arises is via metal-catalyzed oxidative damage of cardiac myosin binding protein C (cMyBP-C) found in cardiac tissue. Previous research indicates that metal ion mediated reactive oxygen species induce high levels of protein carbonylation, changing the structure and function of this protein. In this work, we use long timescale all-atom molecular dynamics simulations to investigate the ion environment surrounding the C0 and C1 subunits of cMyBP-C responsible for actin binding. We show that divalent cations are co-localized with protein carbonylation-prone amino acid residues and that carbonylation of these residues can lead to site-specific interruption to the actin-cMyBP-C binding.


Asunto(s)
Actinas , Proteínas Portadoras , Actinas/química , Proteínas Portadoras/química , Proteína C/metabolismo , Unión Proteica , Metales/metabolismo , Miosinas Cardíacas/metabolismo , Fosforilación
3.
Protein Eng Des Sel ; 362023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-37498171

RESUMEN

Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity. One source of NAABs is the ClpS protein family, which serve to recruit proteins to bacterial proteosomes based on the identity of the N-terminal amino acid. In this study, a Thermosynechococcus vestitus (also known as Thermosynechococcus elongatus) ClpS2 protein was used as the starting point for direct evolution of an NAAB with affinity and specificity for N-terminal leucine. Enriched variants were analyzed and shown to improve the interaction between the ClpS surface and the peptide chain, without increasing promiscuity. Interestingly, interactions were found that were unanticipated which favor different charged residues located at position 5 from the N-terminus of a target peptide.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Unión Proteica , Proteínas Portadoras/química
4.
J Mol Biol ; 434(18): 167633, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35595167

RESUMEN

Human hepatitis B virus (HBV) replication is initiated by the binding of the viral polymerase (P) to epsilon (ε), an ≈85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 5'-end of the pre-genomic RNA (pgRNA). This interaction triggers P and pgRNA packaging and protein-primed reverse transcription and is therefore an attractive therapeutic target. Our recent nuclear magnetic resonance (NMR) structure of ε provides a useful starting point toward a detailed understanding of HBV replication, and hints at the functional importance of ε dynamics. Here, we present a detailed description of ε motions on the ps to ns and µs to ms time scales by NMR spin relaxation and relaxation dispersion, respectively. We also carried out molecular dynamics simulations to provide additional insight into ε conformational dynamics. These data outline a series of complex motions on multiple time scales within ε. Moreover, these motions occur in mostly conserved nucleotides from structural regions (i.e., priming loop, pseudo-triloop, and U43 bulge) that biochemical and mutational studies have shown to be essential for P binding, P-pgRNA packaging, protein-priming, and DNA synthesis. Taken together, our work implicates RNA dynamics as an integral feature that governs HBV replication.


Asunto(s)
Virus de la Hepatitis B , Conformación de Ácido Nucleico , ARN Viral , Replicación Viral , Genómica , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , ARN Viral/química , Transcripción Reversa
5.
RNA ; 28(7): 937-946, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483823

RESUMEN

We describe the conformational ensemble of the single-stranded r(UCAAUC) oligonucleotide obtained using extensive molecular dynamics (MD) simulations and Rosetta's FARFAR2 algorithm. The conformations observed in MD consist of A-form-like structures and variations thereof. These structures are not present in the pool generated using FARFAR2. By comparing with available nuclear magnetic resonance (NMR) measurements, we show that the presence of both A-form-like and other extended conformations is necessary to quantitatively explain experimental data. To further validate our results, we measure solution X-ray scattering (SAXS) data on the RNA hexamer and find that simulations result in more compact structures than observed from these experiments. The integration of simulations with NMR via a maximum entropy approach shows that small modifications to the MD ensemble lead to an improved description of the conformational ensemble. Nevertheless, we identify persisting discrepancies in matching experimental SAXS data.


Asunto(s)
Simulación de Dinámica Molecular , ARN , Espectroscopía de Resonancia Magnética , Oligonucleótidos , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
J Comput Chem ; 43(13): 930-935, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35318701

RESUMEN

Setting up molecular dynamics simulations from experimentally determined structures is often complicated by a variety of factors, particularly the inclusion of carbohydrates, since these have several anomer types which can be linked in a variety of ways. Here we present a stand-alone tool implemented in the widely-used software CPPTRAJ that can be used to automate building structures and generating a "ready to run" parameter and coordinate file pair. This tool automatically identifies carbohydrate anomer type, configuration, linkage, and functional groups, and performs topology modifications (e.g., renaming residue/atom names) required to build the final system using state of the art GLYCAM force field parameters. It will also generate the necessary commands for bonding carbohydrates and creating any disulfide bonds.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Carbohidratos/química
7.
J Mol Biol ; 434(2): 167391, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34890647

RESUMEN

Previous reports present different models for the stabilization of the Fc-FcγRI immune complex. Although accord exists on the importance of L235 in IgG1 and some hydrophobic contacts for complex stabilization, discord exists regarding the existence of stabilizing glycoprotein contacts between glycans of IgG1 and a conserved FG-loop (171MGKHRY176) of FcγRIa. Complexes formed from the FcγRIa receptor and IgG1s containing biantennary glycans with N-acetylglucosamine, galactose, and α2,6-N-acetylneuraminic terminations were measured by hydrogen-deuterium exchange mass spectrometry (HDX-MS), classified for dissimilarity with Welch's ANOVA and Games-Howell post hoc procedures, and modeled with molecular dynamics (MD) simulations. For each glycoform of the IgG1-FcγRIa complex peptic peptides of Fab, Fc and FcγRIa report distinct H/D exchange rates. MD simulations corroborate the differences in the peptide deuterium content through calculation of the percent of time that transient glycan-peptide bonds exist. These results indicate that stability of IgG1-FcγRIa complexes correlate with the presence of intermolecular glycoprotein interactions between the IgG1 glycans and the 173KHR175 motif within the FG-loop of FcγRIa. The results also indicate that intramolecular glycan-protein bonds stabilize the Fc region in isolated and complexed IgG1. Moreover, HDX-MS data evince that the Fab domain has glycan-protein binding contacts within the IgG1-FcγRI complex.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Glicoproteínas/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Inmunoglobulina G/química , Simulación de Dinámica Molecular , Receptores de IgG/química , Anticuerpos Monoclonales/química , Complejo Antígeno-Anticuerpo/metabolismo , Galactosa , Glicoproteínas/metabolismo , Proteínas de la Membrana/química , Péptidos/química , Péptidos/metabolismo , Polisacáridos , Unión Proteica
9.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867123

RESUMEN

A considerable amount of rapid-paced research is underway to combat the SARS-CoV-2 pandemic. In this work, we assess the 3D structure of the 5' untranslated region of its RNA, in the hopes that stable secondary structures can be targeted, interrupted, or otherwise measured. To this end, we have combined molecular dynamics simulations with previous Nuclear Magnetic Resonance measurements for stem loop 2 of SARS-CoV-1 to refine 3D structure predictions of that stem loop. We find that relatively short sampling times allow for loop rearrangement from predicted structures determined in absence of water or ions, to structures better aligned with experimental data. We then use molecular dynamics to predict the refined structure of the transcription regulatory leader sequence (TRS-L) region which includes stem loop 3, and show that arrangement of the loop around exchangeable monovalent potassium can interpret the conformational equilibrium determined by in-cell dimethyl sulfate (DMS) data.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Regiones no Traducidas 5'/genética , COVID-19 , Humanos , Secuencias Invertidas Repetidas/genética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Pandemias , ARN Viral/genética , SARS-CoV-2
10.
Proteins ; 88(9): 1189-1196, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32181926

RESUMEN

ClpS2 is a small protein under development as a probe for selectively recognizing N-terminal amino acids of N-degron peptide fragments. To understand the structural basis of ClpS2 specificity for an N-terminal amino acid, all atom molecular dynamics (MD) simulations were conducted using the sequence of a bench-stable mutant of ClpS2, called PROSS. We predicted that a single amino acid leucine to asparagine substitution would switch the specificity of PROSS ClpS2 to an N-terminal tyrosine over the preferred phenylalanine. Experimental validation of the mutant using a fluorescent yeast-display assay showed an increase in tyrosine binding over phenylalanine, in support of the proposed hypothesis.


Asunto(s)
Agrobacterium tumefaciens/genética , Asparagina/química , Proteínas Bacterianas/química , Leucina/química , Péptido Hidrolasas/química , Fenilalanina/química , Agrobacterium tumefaciens/metabolismo , Sustitución de Aminoácidos , Asparagina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Técnicas de Visualización de Superficie Celular , Expresión Génica , Enlace de Hidrógeno , Leucina/metabolismo , Simulación de Dinámica Molecular , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Fenilalanina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 294(48): 18046-18056, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31604819

RESUMEN

Monoclonal antibodies (mAbs) represent an important platform for the development of biotherapeutic products. Most mAbs are produced in mammalian cells, but several mAbs are made in Escherichia coli, including therapeutic fragments. The NISTmAb is a well-characterized reference material made widely available to facilitate the development of both originator biologics and biosimilars. Here, when expressing NISTmAb from codon-optimized constructs in E. coli (eNISTmAb), a truncated variant of its heavy chain was observed. N-terminal protein sequencing and mutagenesis analyses indicated that the truncation resulted from an internal translation initiation from a GTG codon (encoding Val) within eNISTmAb. Using computational and biochemical approaches, we demonstrate that this translation initiates from a weak Shine-Dalgarno sequence and is facilitated by a putative ribosomal protein S1-binding site. We also observed similar internal initiation in the mAb adalimumab (the amino acid sequence of the drug Humira) when expressed in E. coli Of note, these internal initiation regions were likely an unintended result of the codon optimization for E. coli expression, and the amino acid pattern from which it is derived was identified as a Pro-Ser-X-X-X-Val motif. We discuss the implications of our findings for E. coli protein expression and codon optimization and outline possible strategies for reducing the likelihood of internal translation initiation and truncated product formation.


Asunto(s)
Adalimumab , Escherichia coli , Cadenas Pesadas de Inmunoglobulina , Iniciación de la Cadena Peptídica Traduccional , Adalimumab/biosíntesis , Adalimumab/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
12.
J Struct Biol ; 207(3): 250-259, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279068

RESUMEN

Molecular dynamics (MD) simulations play an important role in characterizing Ribonucleic Acid (RNA) structure, augmenting information from experimental techniques such as Nuclear Magnetic Resonance (NMR). In this work, we examine the accuracy of structural representation resulting from application of a number of explicit and implicit solvent models and refinement protocols against experimental data ranging from high density of residual dipolar coupling (RDC) restraints to completely unrestrained simulations. For a prototype A-form RNA helix, our results indicate that AMBER RNA force field with either implicit or explicit solvent can produce a realistic dynamic representation of RNA helical structure, accurately cross-validating with respect to a diverse array of NMR observables. In refinement against NMR distance restraints, modern MD force fields are found to be equally adequate, with high fidelity cross-validation to the residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), while slightly over-estimating structural order as monitored via NMR relaxation data. With restraints trimmed to encode only for base pairing information, cross-validation quality significantly deteriorates, now exhibiting a pronounced dependence on the choice of the solvent model. This deterioration is found to be partially reversible by increasing planarity restraints on the nucleobase geometry. For completely unrestrained MD simulations, the choice of water model becomes very important, with the best-performing TIP4P-Ew accurately reproducing both the RDC and RCSA data, while closely matching the NMR-derived order parameters. The information provided here will serve as a foundation for MD-based refinement of solution state NMR structures of RNA.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química , Solventes/química , Algoritmos , Espectroscopía de Resonancia Magnética
13.
J Biomol NMR ; 73(3-4): 117-139, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31049778

RESUMEN

Structural information about ribonucleic acid (RNA) is lagging behind that of proteins, in part due to its high charge and conformational variability. Molecular dynamics (MD) has played an important role in describing RNA structure, complementing information from both nuclear magnetic resonance (NMR), or X-ray crystallography. We examine the impact of the choice of the empirical force field for RNA structure refinement using cross-validation against residual dipolar couplings (RDCs) as structural accuracy reporter. Four force fields, representing both the state-of-the art in RNA simulation and the most popular selections in NMR structure determination, are compared for a prototypical A-RNA helix. RNA structural accuracy is also evaluated as a function of both density and nature of input NMR data including RDCs, anisotropic chemical shifts, and distance restraints. Our results show a complex interplay between the experimental restraints and the force fields indicating two best-performing choices: high-fidelity refinement in explicit solvent, and the conformational database-derived potentials. Accuracy of RNA models closely tracks the density of 1-bond C-H RDCs, with other data types having beneficial, but smaller effects. At lower RDC density, or when refining against NOEs only, the two selected force fields are capable of accurately describing RNA helices with little or no experimental RDC data, making them available for the higher order structure assembly or better quantification of the intramolecular dynamics. Unrestrained simulations of simple RNA motifs with state-of-the art MD force fields appear to capture the flexibility inherent in nucleic acids while also maintaining a good agreement with the experimental observables.


Asunto(s)
Modelos Moleculares , Conformación de Ácido Nucleico , ARN/química , Algoritmos , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Reproducibilidad de los Resultados
14.
Soft Matter ; 15(21): 4284-4293, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31094392

RESUMEN

Despite their great promise as fluorescent biological probes and sensors, the structure and dynamics of Ag complexes derived from single stranded DNA (ssDNA) are less understood than their double stranded counterparts. In this work, we seek new insights into the structure of single AgNssDNA clusters using analytical ultracentrifugation (AUC), nuclear magnetic resonance spectroscopy, infrared spectroscopy and molecular dynamics simulations (MD) of a fluorescent (AgNssDNA)8+ nanocluster. The results suggest that the purified (AgNssDNA)8+ nanocluster is a mixture of predominantly Ag15 and Ag16 species that prefer two distinct long-lived conformational states: one extended, the other approaching spherical. However, the ssDNA strands within these clusters are highly mobile. Ag(i) interacts preferentially with the nucleobase rather than the phosphate backbone, causing a restructuring of the DNA strand relative to the bare DNA. Infrared spectroscopy and MD simulations of (AgNssDNA)8+ and model nucleic acid homopolymers suggest that Ag(i) has a higher affinity for cytosine over guanine bases, little interaction with adenine, and virtually none with thymine. Ag(i) shows a tendency to interact with cytosine N3 and O2 and guanine N7 and O6, opening the possibility for a Ag(i)-base bifurcated bond to act as a nanocluster nucleation and strand stabilizing site. This work provides valuable insight into nanocluster structure and dynamics which drive stability and optical properties, and additional studies using these types of characterization techniques are important for the rational design of single stranded AgDNA nanocluster sensors.


Asunto(s)
ADN de Cadena Simple/química , Plata/química , Secuencia de Bases , ADN de Cadena Simple/genética , Conformación Molecular , Simulación de Dinámica Molecular
15.
J Biomol Struct Dyn ; 36(1): 243-253, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28406059

RESUMEN

The interactions in the tertiary structure of a ribosomal RNA fragment in the GTPase Associating Center (GAC) have been experimentally studied, but the roles of the bound and diffuse cations in its folding pathway have not yet been fully elucidated. Melting experiments have shown that the temperature of the first of the two distinguishable transitions in the unfolding pathway of the GAC RNA can be regulated by altering the magnesium concentration, yet the physical interpretation of such ion-dependent effects on folding have not been clearly understood in spite of the availability of crystal structures that depict many GAC RNA-ion interactions. Here, we use umbrella sampling and molecular dynamics (MD) simulations to provide a physical description for the first transition in this unfolding pathway, with a focus on the role of a chelated magnesium ion. Our results indicate that the presence of cations mediating the local interaction of two loops stabilizes the folded state relative to the unfolded or partially folded states. Also, our findings suggest that a bridging magnesium ion between the two loops improves the stabilizing effect. This is consistent with the multistep unfolding pathway proposed for the GAC RNA and highlights the importance of ions in the first unfolding step. The results suggest how MD simulations can provide insight into RNA unfolding pathways as a complementary approach to experiments.


Asunto(s)
Cationes/química , GTP Fosfohidrolasas/química , Conformación de Ácido Nucleico , ARN Ribosómico/química , Cationes/metabolismo , GTP Fosfohidrolasas/metabolismo , Magnesio/química , Magnesio/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , ARN Ribosómico/metabolismo
16.
Biophys J ; 113(2): 313-320, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28669407

RESUMEN

Though the structure of the substrate stem loop I (SLI)-stem loop V (SLV) kissing loop junction of the Varkud Satellite ribozyme has been experimentally characterized, the dynamics of this Mg2+-dependent loop-loop interaction have been elusive. Specifically, each hairpin loop contains a U-turn motif, but only SLV shows a conformational shift triggered by Mg2+ ion association. Here, we use molecular dynamics simulations to analyze the binding and dynamics of this kissing loop junction. We show that SLV acts as a scaffold, providing stability to the junction. Mg2+ ions associate with SLV when it is part of the junction in a manner similar to when it is unbound, but there is no specificity in Mg2+ binding for the SLI loop. This suggests that the entropic penalty of ordering the larger SLI is too high, allowing SLV to act as a scaffold for multiple substrate loop sequences.


Asunto(s)
Endorribonucleasas/metabolismo , Magnesio/metabolismo , Conformación de Ácido Nucleico , ARN Catalítico/metabolismo , ARN de Hongos/metabolismo , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Endorribonucleasas/química , Enlace de Hidrógeno , Magnesio/química , Modelos Genéticos , Simulación de Dinámica Molecular , Neurospora , ARN Catalítico/química , ARN de Hongos/química
17.
J Am Chem Soc ; 139(7): 2682-2692, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28098999

RESUMEN

8-Oxoguanine (8-oxoG), a mutagenic DNA lesion generated under oxidative stress, differs from its precursor guanine by only two substitutions (O8 and H7). Human 8-oxoguanine glycosylase 1 (OGG1) can locate and remove 8-oxoG through extrusion and excision. To date, it remains unclear how OGG1 efficiently distinguishes 8-oxoG from a large excess of undamaged DNA bases. We recently showed that formamidopyrimidine-DNA glycosylase (Fpg), a bacterial functional analog of OGG1, can selectively facilitate eversion of oxoG by stabilizing several intermediate states, and it is intriguing whether OGG1 also employs a similar mechanism in lesion recognition. Here, we use molecular dynamics simulations to explore the mechanism by which OGG1 discriminates between 8-oxoG and guanine along the base-eversion pathway. The MD results suggest an important role for kinking of the DNA by the glycosylase, which positions DNA phosphates in a way that assists lesion recognition during base eversion. The computational predictions were validated through experimental enzyme assays on phosphorothioate substrate analogs. Our simulations suggest that OGG1 distinguishes between 8-oxoG and G using their chemical dissimilarities not only at the active site but also at earlier stages during base eversion, and this mechanism is at least partially conserved in Fpg despite a lack of structural homology. The similarity also suggests that lesion recognition through multiple gating steps may be a common theme in DNA repair. Our results provide new insight into how enzymes can exploit kinetics and DNA conformational changes to probe the chemical modifications present in DNA lesions.


Asunto(s)
ADN Glicosilasas , ADN/química , Guanina/análogos & derivados , Simulación de Dinámica Molecular , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Guanina/metabolismo , Humanos , Cinética , Conformación Molecular , Estructura Molecular
18.
J Chem Theory Comput ; 12(7): 3382-9, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27294370

RESUMEN

We compare the performance of five magnesium (Mg(2+)) ion models in simulations of an RNA stem loop which has an experimentally determined divalent ion dependent conformational shift. We show that despite their differences in parametrization and resulting van der Waals terms, including differences in the functional form of the nonbonded potential, when the RNA adopts its folded conformation, all models behave similarly across ten independent microsecond length simulations with each ion model. However, when the entire structure ensemble is accounted for, chelation of Mg(2+) to RNA is seen in three of the five models, most egregiously and likely artifactual in simulations using a 12-6-4 model for the Lennard-Jones potential. Despite the simple nature of the fixed point-charge and van der Waals sphere models employed, and with the exception of the likely oversampled directed chelation of the 12-6-4 potential models, RNA-Mg(2+) interactions via first shell water molecules are surprisingly well described by modern parameters, allowing us to observe the spontaneous conformational shift from Mg(2+) free RNA to Mg(2+) associated RNA structure in unrestrained molecular dynamics simulations.


Asunto(s)
ARN/química , Simulación por Computador , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular
19.
Nucleic Acids Res ; 44(2): 683-94, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26553802

RESUMEN

In contrast to proteins recognizing small-molecule ligands, DNA-dependent enzymes cannot rely solely on interactions in the substrate-binding centre to achieve their exquisite specificity. It is widely believed that substrate recognition by such enzymes involves a series of conformational changes in the enzyme-DNA complex with sequential gates favoring cognate DNA and rejecting nonsubstrates. However, direct evidence for such mechanism is limited to a few systems. We report that discrimination between the oxidative DNA lesion, 8-oxoguanine (oxoG) and its normal counterpart, guanine, by the repair enzyme, formamidopyrimidine-DNA glycosylase (Fpg), likely involves multiple gates. Fpg uses an aromatic wedge to open the Watson-Crick base pair and everts the lesion into its active site. We used molecular dynamics simulations to explore the eversion free energy landscapes of oxoG and G by Fpg, focusing on structural and energetic details of oxoG recognition. The resulting energy profiles, supported by biochemical analysis of site-directed mutants disturbing the interactions along the proposed path, show that Fpg selectively facilitates eversion of oxoG by stabilizing several intermediate states, helping the rapidly sliding enzyme avoid full extrusion of every encountered base for interrogation. Lesion recognition through multiple gating intermediates may be a common theme in DNA repair enzymes.


Asunto(s)
ADN-Formamidopirimidina Glicosilasa/química , ADN-Formamidopirimidina Glicosilasa/metabolismo , Arginina/química , Arginina/metabolismo , Dominio Catalítico , Citosina/química , Citosina/metabolismo , ADN-Formamidopirimidina Glicosilasa/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Geobacillus stearothermophilus/química , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Especificidad por Sustrato
20.
J Chem Theory Comput ; 11(9): 3969-72, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26575892

RESUMEN

We compare the performance of two different RNA force fields in four water models in simulating the conformational ensembles r(GACC) and r(CCCC). With the increased sampling facilitated by multidimensional replica exchange molecular dynamics (M-REMD), populations are compared to NMR data to evaluate force field reliability. The combination of AMBER ff12 with vdW(bb) modifications and the OPC water model produces results in quantitative agreement with the NMR ensemble that have eluded us to date.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química , Resonancia Magnética Nuclear Biomolecular , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA