Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 30636-30647, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38651970

RESUMEN

Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteriaAllivibrio fischeriand metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.


Asunto(s)
Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Humanos , Oro/química , Biomarcadores/sangre , Biomarcadores/análisis , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Inmunoglobulina G/sangre , Aliivibrio fischeri , COVID-19/diagnóstico , COVID-19/virología , Iridio/química
2.
Anal Chem ; 94(2): 1271-1285, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34979088

RESUMEN

The quantitative detection of different molecular targets is of utmost importance for a variety of human activities, ranging from healthcare to environmental studies. Bioanalytical methods have been developed to solve this and to achieve the quantification of multiple targets from small volume samples. Generally, they can be divided into two different classes: point of care (PoC) and laboratory-based approaches. The former is rapid, low-cost, and user-friendly; however, the majority of the tests are semiquantitative, lacking in specificity and sensitivity. On the contrary, laboratory-based approaches provide high sensitivity and specificity, but the bulkiness of experimental instruments and complicated protocols hamper their use in resource-limited settings. In response, here we propose a smartphone-based device able to support laboratory-based optical techniques directly at the point of care. Specifically, we designed and fabricated a portable microplate reader that supports colorimetric, fluorescence, luminescence, and turbidity analyses. To demonstrate the potential of the device, we characterized its analytical performance by detecting a variety of relevant molecular targets (ranging from antibodies, toxins, drugs, and classic fluorophore dyes) and we showed how the estimated results are comparable to those obtained from a commercial microplate reader. Thanks to its low cost (<$300), portability (27 cm [length] × 18 cm [width] × 7 cm [height]), commercially available components, and open-source-based system, we believe it represents a valid approach to bring high-precision laboratory-based analysis at the point of care.


Asunto(s)
Colorimetría , Teléfono Inteligente , Colorimetría/métodos , Colorantes Fluorescentes , Humanos , Sistemas de Atención de Punto
3.
Lab Chip ; 21(12): 2417-2426, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33973613

RESUMEN

Water is the most important ingredient of life. Water fecal pollution threatens water quality worldwide and has direct detrimental effects on human health and the global economy. Nowadays, assessment of water fecal pollution relies on time-consuming techniques that often require well-trained personnel and highly-equipped laboratories. Therefore, faster, cheaper, and easily-used systems are needed to in situ monitor water fecal pollution. Herein, we have developed colorimetric lateral flow strips (LFS) able to detect and quantify Escherichia coli species in tap, river, and sewage water samples as an indicator of fecal pollution. The combination of LFS with a simple water filtration unit and a commercially available colorimetric reader enhanced the assay sensitivity and enabled more accurate quantification of bacteria concentration down to 104 CFU mL-1 in 10 minutes, yielding recovery percentages between 80% and 90% for all water samples analyzed. Overall, this system allows for monitoring and assessing water quality based on E. coli species as a standard microbiological indicator of fecal pollution. Furthermore, we have developed a novel bioluminescent, bacteria-based method to quickly characterize the performance of a great variety of LFS materials. This new method allows evaluating the flow rate of big analytes such as bacteria through the LFS materials, as a suggestive means for selecting the appropriate materials for fabricating LFS targeting big analytes (≈2 µm). As a whole, the proposed approach can accelerate and reduce the costs of water quality monitoring and pave the way for further improvement of fecal pollution detection systems.


Asunto(s)
Escherichia coli , Microfluídica , Colorimetría , Monitoreo del Ambiente , Humanos , Microbiología del Agua , Contaminación del Agua/análisis
4.
J Hazard Mater ; 406: 124434, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33307446

RESUMEN

Recently, many bioluminescence-based applications have arisen in several fields, such as biosensing, bioimaging, molecular biology, and human health diagnosis. Among all bioluminescent organisms, Aliivibrio fischeri (A. fischeri) is a bioluminescent bacterium used to carry out water toxicity assays since the late 1970s. Since then, several commercial A. fischeri-based products have been launched to the market, as these bacteria are considered as a gold standard for water toxicity assessment worldwide. However, the aforementioned commercial products rely on expensive equipment, requiring several reagents and working steps, as well as high-trained personnel to perform the assays and analyze the output data. For these reasons, in this work, we have developed for the first time a mobile-phone-based sensing platform for water toxicity assessment in just 5 min using two widespread pesticides as model analytes. To accomplish this, we have established new methodologies to enhance the bioluminescent signal of A. fischeri based on the bacterial culture in a solid media and/or using graphene oxide. Finally, we have addressed the biocompatibility of graphene oxide to A. fischeri, boosting the sensitivity of the toxicity assays and the bacterial growth of the lyophilized bacterial cultures for more user-friendly storage.


Asunto(s)
Aliivibrio fischeri , Grafito , Bioensayo , Grafito/toxicidad , Humanos , Óxidos
5.
Nat Protoc ; 15(12): 3788-3816, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33097926

RESUMEN

Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.


Asunto(s)
Inmunoensayo/métodos , Nanopartículas , Nanotecnología/métodos , Animales , Diseño de Equipo , Humanos , Inmunoensayo/instrumentación , Nanotecnología/instrumentación
6.
Biosens Bioelectron ; 168: 112559, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32890932

RESUMEN

The ease of use, low cost and quick operation of lateral flow assays (LFA) have made them some of the most common point of care biosensors in a variety of fields. However, their generally low sensitivity has limited their use for more challenging applications, where the detection of low analytic concentrations is required. Here we propose the use of soluble wax barriers to selectively and temporarily accumulate the target and label nanoparticles on top of the test line (TL). This extended internal incubation step promotes the formation of the immune-complex, generating a 51.7-fold sensitivity enhancement, considering the limit of quantification, and up to 96% signal enhancement compared to the conventional LFA for Human IgG (H-IgG) detection.


Asunto(s)
Técnicas Biosensibles , Bioensayo , Humanos , Inmunoglobulina G , Límite de Detección , Sistemas de Atención de Punto
7.
Food Chem ; 297: 124965, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31253343

RESUMEN

Considering the health risks of E. coli O157:H7 presence in food and water, an affordable and highly sensitive detection method is crucial. Herein, we report the first use of a single antibody-based fluorescent lateral flow immunoassay (FLFIA) depending on non-radiative energy transfer between graphene oxide and quantum dots for determination of E. coli O157:H7 in beef and river water. FLFIA showed a high sensitivity rate thousand-fold better than the conventional lateral flow (LF). In inoculated minced beef and river water samples, the limits of detection were 178 and 133 CFU g-1 or mL-1, respectively. Besides, it presented a high selectivity in the presence of other possible interfering bacteria. The single antibody approach reduced the assay cost to 60% less than the conventional LF. Alongside, the results could be read by portable LF readers or smartphones. These advantages offer FLFIA as a promising technology for pathogen detection in food and water.


Asunto(s)
Escherichia coli O157 , Microbiología de Alimentos/instrumentación , Microbiología de Alimentos/métodos , Inmunoensayo/métodos , Carne Roja/microbiología , Animales , Anticuerpos , Bovinos , Diseño de Equipo , Escherichia coli O157/inmunología , Colorantes Fluorescentes/química , Microbiología de Alimentos/economía , Grafito , Inmunoensayo/economía , Inmunoensayo/instrumentación , Óxidos , Puntos Cuánticos , Ríos/microbiología , Sensibilidad y Especificidad , Teléfono Inteligente , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...