Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(4): e0193523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38451085

RESUMEN

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.


Asunto(s)
Citomegalovirus , Células Madre , Trofoblastos , Replicación Viral , Femenino , Humanos , Embarazo , Diferenciación Celular/genética , Linaje de la Célula/genética , Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/patogenicidad , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/fisiopatología , Infecciones por Citomegalovirus/virología , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Placenta/citología , Placenta/patología , Placenta/fisiopatología , Placenta/virología , Primer Trimestre del Embarazo , Células Madre/citología , Células Madre/virología , Trofoblastos/citología , Trofoblastos/virología
2.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168202

RESUMEN

Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA-sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and WNT signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. Importance: Placental infection plays a central role in HCMV pathogenesis during pregnancy, but the species-specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human TSCs represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.

3.
Front Immunol ; 12: 686415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211475

RESUMEN

Human cytomegalovirus (HCMV) infects the placenta, and these placental infections can cause fetal injury and/or demise. The timing of maternal HCMV infection during pregnancy is a determinant of fetal outcomes, but how development affects the placenta's susceptibility to infection, the likelihood of placental injury post-infection, and the frequency of transplacental HCMV transmission remains unclear. In this study, guinea pig cytomegalovirus (GPCMV) was used to model primary maternal infection and compare the effects of infection at two different times on the placenta. When guinea pigs were infected with GPCMV at either 21- or 35-days gestation (dGA), maternal and placental viral loads, as determined by droplet digital PCR, were not significantly affected by the timing of maternal infection. However, when the transcriptomes of gestational age-matched GPCMV-infected and control placentas were compared, significant infection-associated changes in gene expression were only observed after maternal infection at 35 dGA. Notably, transcripts associated with immune activation (e.g. Cxcl10, Ido1, Tgtp1, and Tlr8) were upregulated in the infected placenta. A GPCMV-specific in situ hybridization assay detected rare infected cells in the main placenta after maternal infection at either time, and maternal infection at 35 dGA also caused large areas of GPCMV-infected cells in the junctional zone. As GPCMV infection after mid-gestation is known to cause high rates of stillbirth and/or fetal growth restriction, our results suggest that the placenta becomes sensitized to infection-associated injury late in gestation, conferring an increased risk of adverse pregnancy outcomes after cytomegalovirus infection.


Asunto(s)
Infecciones por Citomegalovirus/congénito , Citomegalovirus/fisiología , Placenta/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Animales , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Femenino , Cobayas , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Carga Viral
4.
Virology ; 548: 93-100, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32838950

RESUMEN

Human cytomegalovirus (HCMV) infects the chorioamnion, but whether these infections cause fetal membrane dysfunction remains poorly understood. We sought to assess whether guinea pig cytomegalovirus (GPCMV) infects amnion-derived cells in vitro, compare the inflammatory response of amnion cells to GPCMV and HCMV, and determine if GPCMV infects the amnion in vivo. We found that GPCMV replicates in primary guinea pig amnion derived cells and HPV16 E6/E7-transduced amniotic epithelial cells (AEC[E6/E7]s). HCMV and GPCMV infection of amnion cells increased the transcription of the chemokines CCL5/Ccl5, CXCL8/Cxcl8, and CXCL10/Cxcl10. Myd88-knockdown decreased Ccl5 and Cxc8 transcription in GPCMV-infected AEC[E6/E7]s. GPCMV was detected in the guinea pig amnion after primary maternal infection, revealing that guinea pigs are an appropriate model to study fetal membrane physiology after cytomegalovirus infection. As inflammation is known to cause fetal membrane weakening, the amnion's response to cytomegalovirus infection may cause preterm birth and other adverse pregnancy outcomes.


Asunto(s)
Amnios/inmunología , Quimiocinas/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Complicaciones del Embarazo/inmunología , Amnios/virología , Animales , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocinas/genética , Citomegalovirus/genética , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Femenino , Cobayas , Humanos , Interleucina-8/genética , Interleucina-8/inmunología , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA