Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37541258

RESUMEN

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Mutación , Organoides/metabolismo , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
3.
EMBO J ; 42(18): e111252, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37519262

RESUMEN

Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.


Asunto(s)
Filamentos Intermedios , Estrés Proteotóxico , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Autofagia
4.
J Cell Sci ; 136(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36825571

RESUMEN

The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinación , Endosomas/metabolismo , Lisosomas/metabolismo
5.
Trends Cell Biol ; 33(1): 18-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778326

RESUMEN

The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.


Asunto(s)
Núcleo Celular , Proteostasis , Humanos , Núcleo Celular/metabolismo , Mitosis , Citoplasma/metabolismo , Membrana Nuclear/genética
6.
Curr Biol ; 31(17): 3884-3893.e4, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34237268

RESUMEN

The endosomal system constitutes a highly dynamic vesicle network used to relay materials and signals between the cell and its environment.1 Once internalized, endosomes gradually mature into late acidic compartments and acquire a multivesicular body (MVB) organization through invagination of the limiting membrane (LM) to form intraluminal vesicles (ILVs).2 Cargoes sequestered into ILVs can either be delivered to lysosomes for degradation or secreted following fusion of the MVB with the plasma membrane.3 It has been speculated that commitment to ILVs is not a terminal event, and that a return pathway exists, allowing "back-fusion" or "retrofusion" of intraluminal membranes to the LM.4 The existence of retrofusion as a way to support membrane equilibrium within the MVB has been widely speculated in various cell biological contexts, including exosome uptake5 and major histocompatibility complex class II (MHC class II) antigen presentation.6-9 Given the small physical scale, retrofusion of ILVs cannot be measured with conventional techniques. To circumvent this, we designed a chemically tunable cell-based system to monitor retrofusion in real time. Using this system, we demonstrate that retrofusion occurs as part of the natural MVB lifestyle, with attributes parallel to those of viral infection. Furthermore, we find that retrofusion and exocytosis coexist in an equilibrium, implying that ILVs inert to retrofusion comprise a significant fraction of exosomes destined for secretion. MVBs thus contain three types of ILVs: those committed to lysosomal degradation, those retrofusing ILVs, and those subject to secretion in the form of exosomes. VIDEO ABSTRACT.


Asunto(s)
Exosomas , Virosis , Endosomas/metabolismo , Exosomas/metabolismo , Humanos , Membranas Intracelulares , Cuerpos Multivesiculares
7.
Cell Rep ; 34(3): 108659, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472082

RESUMEN

The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Análisis Espacio-Temporal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación/fisiología , Humanos
8.
J Cell Sci ; 133(24)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376155

RESUMEN

Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Calcio/metabolismo , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo
9.
Cell Rep ; 33(10): 108475, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296653

RESUMEN

Membrane contact sites (MCS) are intracellular regions where two organelles come closer to exchange information and material. The majority of the endoplasmic reticulum (ER) MCS are attributed to the ER-localized tether proteins VAPA, VAPB, and MOSPD2. These recruit other proteins to the ER by interacting with their FFAT motifs. Here, we describe MOSPD1 and MOSPD3 as ER-localized tethers interacting with FFAT motif-containing proteins. Using BioID, we identify proteins interacting with VAP and MOSPD proteins and find that MOSPD1 and MOSPD3 prefer unconventional FFAT-related FFNT (two phenylalanines [FF] in a neutral tract) motifs. Moreover, VAPA/VAPB/MOSPD2 and MOSPD1/MOSPD3 assemble into two separate ER-resident complexes to interact with FFAT and FFNT motifs, respectively. Because of their ability to interact with FFNT motifs, MOSPD1 and MOSPD3 could form MCS between the ER and other organelles. Collectively, these findings expand the VAP family of proteins and highlight two separate complexes in control of interactions between intracellular compartments.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos/genética , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Membranas Mitocondriales/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteínas de Transporte Vesicular/fisiología
10.
Nat Commun ; 11(1): 5559, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144569

RESUMEN

Cholesterol import in mammalian cells is mediated by the LDL receptor pathway. Here, we perform a genome-wide CRISPR screen using an endogenous cholesterol reporter and identify >100 genes involved in LDL-cholesterol import. We characterise C18orf8 as a core subunit of the mammalian Mon1-Ccz1 guanidine exchange factor (GEF) for Rab7, required for complex stability and function. C18orf8-deficient cells lack Rab7 activation and show severe defects in late endosome morphology and endosomal LDL trafficking, resulting in cellular cholesterol deficiency. Unexpectedly, free cholesterol accumulates within swollen lysosomes, suggesting a critical defect in lysosomal cholesterol export. We find that active Rab7 interacts with the NPC1 cholesterol transporter and licenses lysosomal cholesterol export. This process is abolished in C18orf8-, Ccz1- and Mon1A/B-deficient cells and restored by a constitutively active Rab7. The trimeric Mon1-Ccz1-C18orf8 (MCC) GEF therefore plays a central role in cellular cholesterol homeostasis coordinating Rab7 activation, endosomal LDL trafficking and NPC1-dependent lysosomal cholesterol export.


Asunto(s)
Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Multimerización de Proteína , Proteínas de Unión al GTP rab/metabolismo , Transporte Biológico , Sistemas CRISPR-Cas/genética , LDL-Colesterol/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Colorantes Fluorescentes/metabolismo , Genoma Humano , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Lisosomas/ultraestructura , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Proteína Niemann-Pick C1 , Unión Proteica , Proteínas de Unión a GTP rab7
11.
Nat Metab ; 2(10): 1046-1061, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958937

RESUMEN

Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.


Asunto(s)
Glucólisis/efectos de los fármacos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/metabolismo , Complejo CD3/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Metaboloma , Fosfatidilinositol 3-Quinasas/metabolismo , ARN/química , Receptores Tipo II del Factor de Necrosis Tumoral/efectos de los fármacos , Análisis de Secuencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
12.
EMBO J ; 39(6): e102301, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32080880

RESUMEN

The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or "late" endosomes are designated by small membrane-bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub-compartment through an ordered Rab7-to-Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Compartimento Celular , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Lisosomas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
13.
Nat Commun ; 10(1): 1454, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926795

RESUMEN

The endosomal system is a highly dynamic multifunctional organelle, whose complexity is regulated in part by reversible ubiquitylation. Despite the wide-ranging influence of ubiquitin in endosomal processes, relatively few enzymes utilizing ubiquitin have been described to control endosome integrity and function. Here we reveal the deubiquitylating enzyme (DUB) ubiquitin-specific protease 32 (USP32) as a powerful player in this context. Loss of USP32 inhibits late endosome (LE) transport and recycling of LE cargos, resulting in dispersion and swelling of the late compartment. Using SILAC-based ubiquitome profiling we identify the small GTPase Rab7-the logistical centerpiece of LE biology-as a substrate of USP32. Mechanistic studies reveal that LE transport effector RILP prefers ubiquitylation-deficient Rab7, while retromer-mediated LE recycling benefits from an intact cycle of Rab7 ubiquitylation. Collectively, our observations suggest that reversible ubiquitylation helps switch Rab7 between its various functions, thereby maintaining global spatiotemporal order in the endosomal system.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/metabolismo , Biocatálisis , Línea Celular Tumoral , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Transporte de Proteínas , Proteolisis , Especificidad por Sustrato , Proteínas de Unión a GTP rab7
14.
Curr Opin Immunol ; 58: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30738283

RESUMEN

Antigen-presenting cells (APCs) capture and present pathogens to T cells, thus arousing adaptive immune responses geared at the elimination of these invaders. In APCs, pathogens acquired from the extracellular space intersect with MHC class II (MHC-II) molecules in the endolysosomal system, where processing and loading of antigenic peptides occur. The resulting complexes can then be directed to the cell surface for recognition by T cells. To achieve this, the endosomal pathway of APCs must undergo dramatic rearrangements upon pathogen encounter. In this review we discuss recent strides in our understanding of how APCs modulate the organization and function of their endolysosomes to best suit different stages of antigen acquisition, processing and presentation cascade.


Asunto(s)
Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Endosomas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Lisosomas/inmunología , Animales , Antígenos/inmunología , Células Dendríticas/inmunología , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Linfocitos T/inmunología
15.
Chembiochem ; 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29869826

RESUMEN

The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20 nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.

16.
Angew Chem Int Ed Engl ; 57(29): 8958-8962, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29771001

RESUMEN

SUMO is a post-translational modifier critical for cell cycle progression and genome stability that plays a role in tumorigenesis, thus rendering SUMO-specific enzymes potential pharmacological targets. However, the systematic generation of tools for the activity profiling of SUMO-specific enzymes has proven challenging. We developed a diversifiable synthetic platform for SUMO-based probes by using a direct linear synthesis method, which permits N- and C-terminal labelling to incorporate dyes and reactive warheads, respectively. In this manner, activity-based probes (ABPs) for SUMO-1, SUMO-2, and SUMO-3-specific proteases were generated and validated in cells using gel-based assays and confocal microscopy. We further expanded our toolbox with the synthesis of a K11-linked diSUMO-2 probe to study the proteolytic cleavage of SUMO chains. Together, these ABPs demonstrate the versatility and specificity of our synthetic SUMO platform for in vitro and in vivo characterization of the SUMO protease family.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Péptido Hidrolasas/análisis , Péptidos/química , Péptidos/metabolismo , Proteolisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Técnicas de Síntesis en Fase Sólida , Especificidad por Sustrato
17.
Curr Biol ; 28(2): R83-R86, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29374452

RESUMEN

The peptide-loading complex is a bottleneck in antigen presentation by major histocompatibility complex (MHC) class I molecules. While the structures of its individual components were known, the recent report of the 7.2 Å structure of the entire complex now fits them into their functional context, explaining this monumental step in antigen acquisition by MHC class I molecules.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Retículo Endoplásmico , Humanos , Péptidos
18.
J Cell Sci ; 130(24): 4087-4096, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180516

RESUMEN

When cell surface receptors engage their cognate ligands in the extracellular space, they become competent to transmit potent signals to the inside of the cell, thereby instigating growth, differentiation, motility and many other processes. In order to control these signals, activated receptors are endocytosed and thoroughly curated by the endosomal network of intracellular vesicles and proteolytic organelles. In this Review, we follow the epidermal growth factor (EGF) receptor (EGFR) from ligand engagement, through its voyage on endosomes and, ultimately, to its destruction in the lysosome. We focus on the spatial and temporal considerations underlying the molecular decisions that govern this complex journey and discuss how additional cellular organelles - particularly the ER - play active roles in the regulation of receptor lifespan. In summarizing the functions of relevant molecules on the endosomes and the ER, we cover the order of molecular events in receptor activation, trafficking and downregulation, and provide an overview of how signaling is controlled at the interface between these organelles.


Asunto(s)
Endocitosis/genética , Retículo Endoplásmico/genética , Receptores ErbB/genética , Lisosomas/genética , Retículo Endoplásmico/metabolismo , Endosomas/genética , Endosomas/metabolismo , Humanos , Ligandos , Lisosomas/metabolismo , Orgánulos/genética , Orgánulos/metabolismo , Transducción de Señal
19.
Trends Cell Biol ; 27(8): 580-594, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28363667

RESUMEN

The endosomal system constitutes a key negotiator between the environment of a cell and its internal affairs. Comprised of a complex membranous network, wherein each vesicle can in principle move autonomously throughout the cell, the endosomal system operates as a coherent unit to optimally face external challenges and maintain homeostasis. Our appreciation of how individual endosomes are controlled in time and space to best serve their collective purpose has evolved dramatically in recent years. In light of these efforts, the endoplasmic reticulum (ER) - with its expanse of membranes permeating the cytoplasmic space - has emerged as a potent spatiotemporal organizer of endosome biology. We review the latest advances in our understanding of the mechanisms underpinning endosomal transport and positioning, with emphasis on the contributions from the ER, and offer a perspective on how the interplay between these aspects shapes the architecture and dynamics of the endosomal system and drives its myriad cellular functions.


Asunto(s)
Compartimento Celular , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Animales , Transporte Biológico , Citoplasma/metabolismo , Humanos , Modelos Biológicos
20.
Cell ; 166(1): 152-66, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27368102

RESUMEN

Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Proteína Sequestosoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...