Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2404669121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047037

RESUMEN

Highly concentrated aqueous electrolytes (termed water-in-salt electrolytes, WiSEs) at solid-liquid interfaces are ubiquitous in myriad applications including biological signaling, electrosynthesis, and energy storage. This interface, known as the electrical double layer (EDL), has a different structure in WiSEs than in dilute electrolytes. Here, we investigate how divalent salts [zinc bis(trifluoromethylsulfonyl)imide, Zn(TFSI)2], as well as mixtures of mono- and divalent salts [lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) mixed with Zn(TFSI)2], affect the short- and long-range structure of the EDL under confinement using a multimodal combination of scattering, spectroscopy, and surface forces measurements. Raman spectroscopy of bulk electrolytes suggests that the cation is closely associated with the anion regardless of valency. Wide-angle X-ray scattering reveals that all bulk electrolytes form ion clusters; however, the clusters are suppressed with increasing concentration of the divalent ion. To probe the EDL under confinement, we use a Surface Forces Apparatus and demonstrate that the thickness of the adsorbed layer of ions at the interface grows with increasing divalent ion concentration. Multiple interfacial layers form following this adlayer; their thicknesses appear dependent on anion size, rather than cation. Importantly, all electrolytes exhibit very long electrostatic decay lengths that are insensitive to valency. It is likely that in the WiSE regime, electrostatic screening is mediated by the formation of ion clusters rather than individual well-solvated ions. This work contributes to understanding the structure and charge-neutralization mechanism in this class of electrolytes and the interfacial behavior of mixed-electrolyte systems encountered in electrochemistry and biology.

2.
Langmuir ; 38(33): 10114-10127, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35952658

RESUMEN

Quartz crystal microbalance with dissipation (QCM-D) conveniently monitors mass and mechanical property changes of thin films on solid substrates with exquisite resolution. QCM-D is frequently used to measure dissolved solute/sol adsorption isotherms and kinetics. Unfortunately, currently available methodologies to interpret QCM-D data treat the adlayer as a homogeneous medium, which does not adequately describe solution-adsorption physics. Tethering of the adsorbate to the solid surface is not explicitly recognized, and the liquid solvent is included in the adsorbate mass, which is especially in error for low coverages. Consequently, the areal mass of adsorbate (i.e., solute adsorption) is overestimated. Further, friction is not considered between the bound adsorbate and the free solvent flowing in the adlayer. To overcome these deficiencies, we develop a two-phase (2P) continuum model that self-consistently determines adsorbate and liquid-solvent contributions and includes friction between the attached adsorbate and flowing liquid solvent. We then compare the proposed 2P model to those of Sauerbrey for a rigid adlayer and Voinova et al. for a viscoelastic-liquid adlayer. Effects of 2P-adlayer properties are examined on QCM-D-measured frequency and dissipation shifts, including adsorbate volume fraction and elasticity, adlayer thickness, and overtone number, thereby guiding data interpretation. We demonstrate that distinguishing between adsorbate adsorption and homogeneous-film adsorption is critical; failing to do so leads to incorrect adlayer mass and physical properties.

3.
ACS Appl Mater Interfaces ; 14(32): 36731-36740, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35916522

RESUMEN

A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon-platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst-particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.

4.
J Phys Chem B ; 122(31): 7790-7796, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30016864

RESUMEN

Perfluorosulfonic acid (PFSA) dispersions are used as components in a variety of electrochemical technologies, particularly in fuel-cell catalyst-layer inks. In this study, we characterize dispersions of a common PFSA, Nafion, as well as inks of Nafion and carbon. It is shown that solvent choice affects a dispersion's measured pH, which is found to scale linearly with Nafion loading. Dispersions in water-rich solvents are more acidic than those in propanol-rich solvents: a 90% water versus 30% water dispersion can have up to a 55% measured proton deviation. Furthermore, because electrostatic interactions are a function of pH, these differences affect how particles aggregate in solution. Despite having different water contents, all inks studied demonstrate the same particle size and surface charge trends as a function of pH, thus providing insights into the relative influence of solvent and pH effects on these properties.

5.
J Biotechnol ; 245: 21-27, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28185883

RESUMEN

Electrofuels processes are potentially promising platforms for biochemical production from CO2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities.


Asunto(s)
Actinobacillus , Fuentes de Energía Bioeléctrica/microbiología , Reactores Biológicos/microbiología , Dióxido de Carbono/metabolismo , Compuestos Ferrosos/metabolismo , Organismos Modificados Genéticamente , Actinobacillus/genética , Actinobacillus/metabolismo , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...